Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Non-esterified fatty acid ; insulin resistance ; MAP kinase ; insulin receptor ; glucose transport.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Saturated fatty acids cause insulin resistance but the underlying molecular mechanism is still unknown. We examined the effect of saturated non-esterified fatty acids on insulin binding and action in transfected Rat-1 fibroblasts, which over-expressed human insulin receptors. Incubation with 1.0 mmol/l palmitate for 1–4 h did not affect insulin binding, insulin receptor autophosphorylation, insulin-stimulated tyrosine kinase activity toward poly(Glu4:Tyr1), pp185 and Shc phosphorylation and PI3-kinase activity in these cells. However, the dose response curve of insulin-stimulated glucose transport was right-shifted. Palmitate inhibited the maximally insulin-stimulated mitogen activated protein (MAP) kinase activity toward synthetic peptide to 7 % that of control. The palmitate treatment influenced neither cytosolic protein kinase A activity nor cAMP levels. These results suggested that 1) palmitate did not inhibit the early steps of insulin action from insulin binding to pp185 or Shc phosphorylation but inhibited insulin-stimulated MAP kinase, and that 2) palmitate decreased insulin sensitivity as manifested by inhibited insulin-stimulated glucose uptake. In conclusion, the mechanism of saturated non-esterified fatty acid induced insulin resistance in glucose uptake may reside at post PI3-kinase or Shc steps, including the level of MAP kinase activation. [Diabetologia (1997) 40: 894–901]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Insulin receptor ; insulin proreceptor ; insulin resistance ; transformed lymphocytes ; point mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An alteration of an amino acid sequence in the processing site of the insulin proreceptor by a point mutation of the insulin receptor gene produced extreme insulin resistance. We characterized functional properties of the unprocessed insulin receptor in transformed lymphocytes from a patient. Insulin binding to intact cells and to a partially purified insulin receptor preparation was radically decreased to 20% and 18% of the control values, respectively. In competitive insulin binding to intact cells, [LeuA3]-, [LeuB24]-, [SerB24-insulin, and mini-proinsulin ([B(1–29)-Ala-Ala-Lys-A(1–21)]-insulin) had the same relative binding activity in both the patient's and the control cells, but proinsulin and IGF-I were markedly less able to displace 125I-insulin in the patient's cells. In contrast to the study in intact cells, proinsulin and IGF-I as well as other insulin analogues had the same relative binding activity to bind to the partially lectin-purified insulin receptor preparations from both the patient's and the control cells. As regards the signal transduction after receptor binding, insulin-stimulated autophosphorylation of the unprocessed insulin proreceptor occurred proportionally to the amount of decreased insulin binding. With 0.025% trypsin treatment, the abnormal binding characteristics and autophosphorylation were normalized through conversion to functionally normal receptors. In spite of the abnormal processing, self-association of receptors into oligomeric structures was observed in the proreceptor. These results suggest that the unprocessed insulin proreceptor in the plasma membranes has an altered conformation which affects its binding characteristics but not its intramolecular signal transmission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...