Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1041
    Keywords: penbutolol ; beta-adrenoceptor blockade ; pharmacokinetics ; pharmacodynamics ; in vitro/in vivo correlation ; radioreceptor assay ; active metabolites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The pharmacokinetics of penbutolol 40 mg, its reduction in exercise-induced tachycardia, and the in vitro inhibition of radioligand binding to beta-adrenoceptors by plasma have been investigated in 7 healthy volunteers. The peak penbutolol concentration of 285 ng/ml was observed 1.2 h after administration, and the maximum of 4′-OH-penbutolol of 4.76 ng/ml was found after 1.64 h. Penbutolol was detected for up to 48 h, and 4′-OH-penbutolol dropped below the limit of detection after about 10 h. The terminal plasma concentration of penbutolol declined with an average half-life of 19 h. The maximum reduction in exercise-induced tachycardia was 33 beats/min 2.6 h after taking penbutolol. There was still a significant reduction of about 7 beats/min after 48 h. This effect could be adequately explained by the concentration-time course of penbutolol in combination with Clark's model of the concentration-effect relationship. Antagonist activity in plasma caused 91% inhibition of radioligand binding in vitro to beta2-adrenoceptors on rat reticulocyte membranes 1.6 h after intake of penbutolol. By 48 h after intake, radioligand binding was still significantly inhibited (23%). The in vitro inhibition of radioligand binding by plasma showed a linear correlation with the reduction in exercise-induced tachycardia for all phases of the workload. The time course of the reduction in heart rate was completely explained by the in vitro inhibition of radioligand binding. However, it was not possible to explain the in vitro inhibition of radioligand binding by the concentration-time course of penbutolol using a simple competition model, although both variables were based on the same sampling site. When the in vitro inhibition of radioligand binding was plotted against the penbutolol concentration at the same sampling times (with both variables transformed to multiples of the apparent inhibition constant) the discrepancy became even more apparent as time-related counterclockwise hysteresis. None of the known metabolites of penbutolol can explain the discrepancy between the penbutolol concentration and the inhibition of radioligand binding in vitro. It appears that an other active metabolite is formed, which contributes to the effect in vitro and in vivo and so can explain the observed discrepancy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1041
    Keywords: beta-blockers ; radioreceptor assay ; propranolol ; carteolol ; active metabolites ; rat reticulocyte membranes ; CGP 12177
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary A radioreceptor assay (RRA) for the assay of beta-adrenoceptor antagonists in native human plasma is described. The hydrophilic antagonist3H-CGP 12177 was used as the radioligand. In contrast to the hydrophobic radioligand3H-dihydroalprenolol, which was investigated in parallel, the beta-adrenoceptor binding of3H-CGP 12177 by rat reticulocyte membranes was found not to be affected by inclusion of increasing proportions (0–66% of incubation volume) of human plasma in the assay. Thus, solvent extraction of drug and/or active metabolites was not necessary to avoid binding of the radioligand tracer to plasma added in the RRA. The assay of unprocessed samples was possible. Drug concentrations in plasma after oral administration of propranolol (240 mg) or carteolol (30 mg) to 6 healthy volunteers were measured by the RRA and in parallel by a chemical method. The results from both methods agreed when the plasma concentration kinetics of propranolol were investigated (elimination half-life: 3.9 h). In contrast, plasma concentrations of carteolol were consistently higher according to the RRA after oral administration of the drug. Identical concentrations, however, were found by the RRA and chemical method using plasma samples spiked with carteolol. Plasma concentrations of carteolol detected by the chemical method decline monoexponentially (elimination half-life: 5.4 h). A similar half-life of elimination for parent drug was found by the RRA (5.9 h), but an additional term describing the appearance of an active metabolite was necessary to account for the biphasic drug elimination (elimination half-life of metabolite: 17.3 h). The latter result is in agreement with the appearance of 8-hydroxy-carteolol as an active metabolite, which shows similar affinity for beta-adrenoceptors as the parent drug. The active metabolite, with a 3-fold longer elimination half-life than the parent drug, will prolong the duration of the clinical effects of orally administered carteolol. In conclusion, the RRA permits the determination of beta-adrenoceptor antagonistic activity in native human plasma at concentrations as low as 0.1-fold the IC50-value of the drug or an active metabolite.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1041
    Keywords: Atropine ; M2-cholinoceptors ; effect kinetics ; radioreceptor assay ; healthy volunteers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Abstract The effects of an oral dose of atropine (0.03 mg/kg body weight) and an IM (0.02 mg/kg) dose on the heart rate and salivary flow in seven healthy adult volunteers were compared to see whether the oral dose was sufficient to inhibit vagal reflexes of the heart. Atropine concentrations in plasma were determined by an M2-selective radioreceptor assay, and the in vitro occupancy of porcine cardiac M2-cholinoceptors was measured in parallel. In ligand-binding studies, atropine has been shown to have a comparable affinity for human and porcine cardiac M2-cholinoceptors (Ki 4.0 and 5.9, respectively). Slight changes in heart rate after oral administration were not significant. After IM administration, however, the heart rate increased significantly, by a maximum of 22 beats·min−1 after 45 min. The slight increase in heart rate after the oral dose corresponded to a receptor occupancy in vitro near the lower limit of detection, whereas the significant increase in heart rate after the IM dose corresponded to a receptor occupancy of up to 47%. The maximum reduction in salivary flow was similar after the oral and IM doses (84.3 and 87.5%, respectively). The almost complete inhibition of salivary flow could be explained by the lower vagal tone in the salivary glands compared with to the heart. The difference in the effect on heart rate was probably due to lower absorption of the oral dose. Thus, an oral dose greater than 0.03 mg atropine/kilogram body weight is required to compensate for low gastrointestinal absorption and to overcome the high vagal tone of the heart.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1041
    Keywords: Celiprolol ; Bisoprolol ; β-Adrenoceptor blockade ; radioreceptor assay ; RRA-kinetics ; impedance cardiography ; ergometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The cardiovascular effects at rest and during exercise and β1- and β2-adrenoceptor occupancy following a single dose of 1200 mg celiprolol p. o. were investigated in 8 healthy subjects with or without pretreatment with a single dose of 20 mg bisoprolol p. o., using a place-bo-controlled, 2-way cross-over design. The ergometric responses of heart rate (HR) and systolic blood pressure (SBP) after celiprolol were reduced to a similar extent as after bisoprolol, but the cardiovascular function at rest was affected in a different way: there was a rise in HR, clear enhancement of cardiac systolic performance, and a considerable drop in the estimated total peripheral vascular resistance, associated with median β1-RRA and β2-RRA occupancies of 88 and 34%, respectively. The cardiovascular effects of celiprolol were not affected by pretreatment with bisoprolol. Celiprolol thus binds extensively to β1-adrenoceptors, moderately to β2-adrenoceptors, acts as β1-adrenergic antagonist (exemplified by the ergometric effects) but has vasodilator, positive chronotropic and cardiac systolic performance enhancing properties, which do not involve either direct or indirect β1-adrenergic agonism, but which might reflect β2-adrenergic agonism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...