Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • secretion  (12)
  • 1
    ISSN: 1432-2013
    Keywords: Key words cAMP ; Cl ; channels ; Cl ; secretion ; Exocrine secretion ; K+ channels ; Volume regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Previously it has been shown that the Na+2Cl–K+ cotransporter accepts NH4 + at its K+ binding site. This property can be used to estimate its transport rates by adding NH4 + to the bath and measuring the initial furosemide-dependent rates of change in BCECF fluorescence. We have utilized this technique to determine the regulation of the furosemide-inhibitable Na+2Cl–K+ cotransporter in in vitroperfused rectal gland tubules (RGT) of Squalus acanthias. Addition of NH4 + to the bath (20 mmol/l) led to an initial alkalinization, corresponding to NH3 uptake. This was followed by an acidification, corresponding to NH4 + uptake. The rate of this uptake was quantified by exponential curve fitting and is given in arbitrary units (Δfluorescence/time). This acidification could be completely inhibited by furosemide. In the absence of any secretagogue preincubation of RGT in a low Cl– solution (6 mmol/l, low Cl–) for 10 min enhanced the uptake rate significantly from 4.04±0.51 to 12.7±1.30 (n=5). The addition of urea (200 mmol/l) was without effect, but the addition of 300 mmol/l mannitol (+300 mannitol) enhanced the rate significantly from 7.24±1.33 to 14.7±4.6 (n=6). Stimulation of NaCl secretion by a solution maximizing the cytosolic cAMP concentration (Stim) led to a significant increase in NH4 + uptake rate from 5.00±1.33 to 13.3±1.54 (n=6). Similar results were obtained in the additional presence of Ba2+ (1 mmol/l): the uptake rate was increased significantly from 4.23±0.34 to 15.1±1.86 (n=16). In the presence of Stim low Cl– had no additional effect on the uptake rate: 15.1±3.1 versus 15.2±2.8 in high Cl– (n=6). The uptake rate in Stim containing additional +300 mannitol (22.3±4.0, n=5) was not significantly different from that obtained with Stim or +300 mannitol alone. By whatever mechanism the NH4 + uptake rate was increased furosemide (500 µmol/l) always reduced this rate to control values. Hence three manoeuvres enhanced furosemide-inhibitable uptake rates of the Na+2Cl–K+ cotransporter probably independently: (1) lowering of cytosolic Cl– concentration; (2) cell shrinkage; and (3) activation by cAMP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words CFTR ; Cl ; channels ; Cl ; secretion ; Endocytosis ; Exocrine secretion ; Exocytosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  NaCl secretion in rectal gland tubules (RGT) of Squalus acanthias requires the activation of Cl– channels in the luminal membrane. The RGT and its mechanism of activation are an early evolutionary paradigm of exocrine secretion. The respective Cl– channels probably resemble the shark equivalent of the cystic fibrosis transmembrane conductance regulator (CFTR). Activation of these Cl– channels occurs via cAMP. It has been hypothesized that the activation of CFTR occurs via exocytosis or inhibited endocytosis. To examine this question directly by electrical measurements we have performed whole-cell patch-clamp analyses of in vitro perfused RGT. NaCl secretion was stimulated by a solution (Stim) containing forskolin (10 µmol/l), dibutyryl-cAMP (0.5 mmol/l) and adenosine (0.5 mmol/l). This led to the expected strong depolarization and an increase in membrane conductance (G m). The membrane capacitance (C m) was measured by a newly devised two-frequency synchronous detector method. It was increased by Stim significantly from 5.00±0.22 to 5.17±0.21 pF (n=50). The increase in C m correlated with the increase in G m with a slope of 51 fF/nS. Next the effect of furosemide (500 µmol/l) was examined in previously stimulated RGT. Furosemide was supposed to inhibit coupled Na+2Cl–K+ uptake and to reduce cell volume but not membrane trafficking of Cl– channels. Furosemide reduced G m slightly (due to the fall in cytosolic Cl– concentration) and C m to the same extent by which Stim had increased it. Both changes were statistically significant, and the slope of ΔC m/ΔG m was similar to that caused by Stim. Inhibitors of microtubules or actin (colchicine, phalloidin and cytochalasin D added at 10 µmol/l to the pipette solution and dialysed for 〉10 min) did not alter cell voltage, G m or C m, nor did these inhibitors abolish the stimulatory effect of cAMP. These data suggest that the small C m changes observed with Stim reflect a minor cell volume increase and an ”unfolding” of the plasma membrane. The present data do not support the exocytosis/endocytosis hypothesis of cAMP-mediated activation of Cl– channels in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 435 (1997), S. 267-272 
    ISSN: 1432-2013
    Keywords: Key words K+ channel ; Colon crypt ; Ca2+ regulation ; Cl ; secretion ; ATP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Previous studies have indicated that a 16-pS K+ channel (KCca) in the basolateral membrane is responsible for the acetylcholine-induced whole-cell K+ conductance in these cells. In the present study we have examined this channel in excised inside-out patches of the basolateral membrane. Over a wide voltage range this channel showed inward rectification. The Ca2+ sensitivity was very marked, with a Hill coefficient of three and with half-maximal activation at 330 nmol/l. After several minutes most channels showed a slow run-down. Channel activity could be refreshed by addition of ATP (1 mmol/l) to the bath solution. The non-metabolizable derivative 5’-adenylylimidodiphosphate (AMP-PNP) had no such effect. In contrast, it inhibited channel activity by some 50%. ATP and its derivatives had no effect on the Ca2+ sensitivity. Channels activated by ATP were subsequently studied in the presence of alkaline (10 kU/l) or acidic (1 kU/l) phosphatase. Both phosphatases reduced channel activity significantly. These data suggest that the 16-pS K+ channel is directly controlled by cytosolic Ca2+. This regulatory step is probably distal to an activation produced by protein-kinase-C-dependent phosphorylation. As is the case for several other K+ channels, high concentrations of non-metabolizable ATP analogues inhibit this channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Key words Cell volume ; Cl ; secretion ; Exocrine secretion ; Na+2Cl ; K+ cotransporter ; Phalloidin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Effects of cAMP on Cl– secretion, intracellular Cl– activity and cell volume were studied in isolated perfused rectal gland tubules (RGT) of Squalus acanthias with electrophysiological and fluorescence methods. Recording of equivalent short-circuit current (I sc) showed that cAMP stimulates Na+Cl– secretion in a biphasic manner. The first and rapid phase corresponds to Cl– exit via the respective protein-kinase-A- (PKA-) phosphorylated Cl– conductance. The inhibitory effect of the loop diuretic furosemide (0.5 mmol/l, n=12) indicates that second phase reflects the delayed (1–2 min) activation of the Na+2Cl–K+ cotransporter. During the first phase cytosolic Cl– activity, as monitored by 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) fluorescence, fell to 78% (n=23) of the control value. Concomitantly, a transient fall in cell volume was recorded by calcein fluorescence to 92% (n=5) of the control value. Preincubation of the RGT with phalloidin (0.1 mmol/l, n=6) or cytochalasin D (0.1 mmol/l, n=4) almost completely prevented the development of the second phase of I sc activation. When cytosolic Cl– activity was increased by exposing the RGT to a high K+ concentration (25 mmol/l), in the presence of mannitol to prevent volume increases, stimulation was unaffected and biphasic. In contrast, when cell volume was clamped to an increased value (115%, n=8) by removing extracellular NaCl, the second phase was abolished completely (n=11). These data suggest that the primary and key process for triggering the Na+2Cl–K+ cotransport is transient cell shrinkage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 434 (1997), S. 188-194 
    ISSN: 1432-2013
    Keywords: Key words Exocrine pancreas ; Cl ; channel ; Cl ; secretion ; Exocrine secretion ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Pancreatic acini secrete Na+, Cl–and H2O in response to secretagogues such as acetylcholine. Cl–channels in the luminal membrane are a prerequisite for this secretion. The properties of the corresponding conductance have previously been examined using whole-cell recordings. The present study attempts to examine the properties of the single channels in cell-attached and cell-free excised patches from the luminal membrane. To this end the pipettes were filled with an N-methyl-D-glucamine (NMDG+) chloride/gluconate solution. The voltage-clamp range was chosen to be pipette positive (cell negative, –60 to –130 mV) in order to increase the driving force for outward Cl–currents. Under resting conditions cell attached luminal patches had very few single-channel currents (12 out of 45 experiments). Their incidence was sharply increased by carbachol (CCH, 1 μmol/l) in 41 out of 45 experiments. The single-channel conductance of these channels was 1.97 ± 0.05 pS. The properties of these channels in excised patches were examined further: their single-channel conductance was 2.2 ± 0.07 pS (n = 59) and their conductance selectivity was I– 〉 Br– 〉 Cl– 〉〉 gluconate. None of the typical Cl–channel blockers (DIDS, NPPB, glibenclamide 100 μmol/l) blocked these channels. It is concluded that the luminal membrane of the rat pancreatic acinus possesses Cl–channels with very low conductance which are activated by carbachol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Key words cGMP ; Cl ; secretion ; C-type natriuretic peptide ; NaCl secretion ; Squalus acanthia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We have examined the mechanism whereby C-type natriuretic peptide (CNP), an agonist acting through the second messenger cGMP, enhances NaCl secretion in the rectal gland of Squalus acanthias. Single rectal gland tubules (RGT) were dissected manually, perfused in vitro and equivalent short-circuit current [I sc=transepithelial voltage/transepithelial resistance (R te)] as well as basolateral membrane voltage (V bl) were measured. CNP was added to luminal and basolateral perfusates at concentrations between 1 and 1000 nmol/l and its effects on the above parameters were compared to those of a ”stimulation cocktail” (Stim, containing dibutyryl cAMP, adenosine and forskolin) that maximally enhances cytosolic cAMP, and other agonists and hormones such as guanylin, vasoactive intestinal peptide (VIP), and adenosine. CNP had no effect from the luminal side (n=6). Its effects from the basolateral side consisted of a substantial increase in I sc (–31.6±7.7 to –316±82.2 µA/cm2, n=15). CNP significantly depolarized the luminal membrane from –87.4±1.0 to –82.3±2.6 mV (n=12). V bl was not changed (n=12) but the fractional conductance for K+ was increased (n=3). These effects were qualitatively and even quantitatively comparable to those of other agonists acting via cytosolic cAMP, but were less marked than those caused by Stim (n=64). The effects of VIP and CNP on I sc were not additive (n=5). The cytosolic Ca2+ concentration ([Ca2+]i) was monitored using the fura-2 fluorescence ratio (FFR 340/380 nm) and it was found that CNP, like agonists acting via cAMP, enhances FFR significantly from 1.02±0.05 to 1.32±0.05 (n=8) with a time constant in the 1–2 min in range. Our data suggest that CNP, acting via the second messenger cGMP, induces a marked increase in I sc in the rectal gland. The concomitant fall in R te corresponds to increases in the luminal membrane Cl– conductance and in the basolateral membrane K+ conductance. The latter effect is probably due to an increase in [Ca2+]i.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; K+ channel ; cAMP ; Exocrine secretion ; Chromanol ; Colonic crypt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have shown previously that secretagogues acting via the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP) activate, besides their marked effect on the luminal Cl− conductance, a K+ conductance in the basolateral membrane of colonic crypt cells. This conductance is blocked by the chromanol 293B. This K+ conductance is examined here in more detail in cell-attached (c.a.) and cell-excised (c.e.) patch- clamp studies. Addition of forskolin (5 μmol/l) to the bath led to the activation of very small-conductance (probably 〈 3 pS) K+ channels in c.a. patches (n = 54). These channels were reversibly inhibited by the addition of 0.1 mmol/l of 293B to the bath (n = 21). Noise analysis revealed that these channels had fast kinetics and produced a Lorentzian noise component with a corner frequency ( f c) of 308 ± 10 Hz (n = 30). The current/voltage curves of this noise indicated that the underlying ion channels were K+ selective. 293B reduced the power density of the noise (S o) to 46 ± 8.7% of its control value and shifted f c from 291 ± 26 to 468 ± 54 Hz (n = 8). In c.e. patches from cells previously stimulated by forskolin, the same type of current persisted in 3 out of 18 experiments when the bath solution was a cytosolic-type solution without adenosine 5′-triphosphate (ATP) (CYT). In 15 experiments the addition of ATP (1 mmol/l) to CYT solution was necessary to induce or augment channel activity. In six experiments excision was performed into CYT + ATP solution and channel activity persisted. 293B exerted a reversible inhibitory effect. The channel activity was reduced by 5 mmol/l Ba2+ and was completely absent when K+ in the bath was replaced by Na+. These data suggest that forskolin activates a K+ channel of very small conductance which can be inhibited directly and reversibly by 293B.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 432 (1996), S. 112-120 
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; K+ channel ; Carbachol ; Exocrine secretion ; Pancreatic acini
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Acetylcholine-controlled exocrine secretion by pancreatic acini has been explained by two hypotheses. One suggests that NaCl secretion occurs by secondary active secretion as has been originally described for the rectal gland of Squalus acanthias. The other is based on a “push-pull” model whereby Cl− is extruded luminally and sequentially taken up basolaterally. In the former model Cl− uptake is coupled to Na+ and basolateral K+ conductances play a crucial role, in the latter model, Na+ uptake supposedly occurs via basolateral non-selective cation channels. The present whole-cell patch-clamp studies were designed to further explore the conductive properties of rat pancreatic acini. Pilot studies in approximately 300 cells revealed that viable cells usually had a membrane voltage (V m) more hyperpolarized than −30 mV. In all further studies V m had to meet this criterion. Under control conditions V m was −49 ± 1 mV (n = 149). The fractional K+ conductance (f K) was 0.13 ± 0.1 (n = 49). Carbachol (CCH, 0.5 μmol/l) depolarized to −19 ± 1.1 mV (n = 63) and increased the membrane conductance (G m) by a factor of 2–3. In the seeming absence of Na+ [replacement by N-methyl-D-glucamine (NMDG+)] V m hyperpolarized slowly to −59 ± 2 mV (n = 90) and CCH still induced depolarizations to −24 ± 2 mV (n = 34). The hyperpolarization induced by NMDG+ was accompanied by a fall in cytosolic pH by 0.4 units, and a very slow and slight increase in cytosolic Ca2+. f K increased to 0.34. The effect of NMDG+ on V m was mimicked by the acidifying agents propionate and acetate (10 mmol/l) added to the bath. The present study suggests that f K makes a substantial contribution to G m under control conditions. The NMDG+ experiments indicate that the non- selective cation conductance contributes little to V m in the presence of CCH. Hence the present data in rat pancreatic acinar cells do not support the push-pull model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; Carbachol ; K+ channel ; cAMP ; Exocrine secretion ; Non-selective cation channel ; Cl ; channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We have previously shown that a new type of K+ channel, present in the basolateral membrane of the colonic crypt base (blm), is necessary for cAMP-activated Cl- secretion. Under basal conditions, and when stimulated by carbachol (CCH) alone, this channel is absent. In the present patch clamp-study we examined the ion channels present in the blm under cell-attached and in cell-excised conditions. In cell-attached recordings with NaCl-type solution in the pipette we measured activity of a K+ channel of 16 ± 0.3 pS (n = 168). The activity of this channel was sharply increased by CCH (0.1 mmol/l, n = 26). Reduction of extracellular Ca2+ to 0.1 mmol/l (n = 34) led to a reversible reduction of activity of this small channel (SKCa). It was also inactivated by forskolin (5 μmol/l, n = 38), whilst the K+ channel noise caused by the very small K+ channel increased. Activity of non-selective cation channels (NScat) was rarely observed immediately prior to the loss of attached basolateral patches and routinely in excised patches. The NScat, with a mean conductance of 49 ± 1.0 pS (n = 96), was Ca2+ activated and required 〉10 μmol/l Ca2+ (cytosolic side = cs). It was reversibly inhibited by ATP (〈1 mmol/l, n = 13) and by 3′,5-dichloro-diphenylamine-2-carboxylate (10–100 μmol/l, n = 5). SKCa was also Ca2+ dependent in excised inside-out basolateral patches. Its activity stayed almost unaltered down to 1 μmol/l (cs) and then fell sharply to almost zero at 0.1 μmol/l Ca2+ (cs, n = 12). SKCa was inhibited by Ba2+ (n = 31) and was charybdotoxin sensitive (1 nmol/l) in outside-out basolateral patches (n = 3). Measurements of the Ca2+ activity ([Ca2+]i) in these cells using fura-2 indicated that forskolin and depolarization, induced by an increase in bath K+ concentration to 30 mmol/l, reduced [Ca2+]i markedly (n = 8–10). Hyperpolarization had the opposite effect. The present data indicate that the blm of these cells contains a small-conductance Ca2+-sensitive K+ channel. This channel is activated promptly by very small increments in [Ca2+]i and is inactivated by a fall in [Ca2+]i induced by forskolin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; Cl ; channels ; K+ channels ; cGMP ; cAMP ; Cytosolic Ca2+ ; Exocrine secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In many exocrine glands cytosolic Ca2+ ([Ca2+]i) plays a pivotal role in stimulation-secretion coupling. In the rectal gland of the dogfish Squalus acanthias this appears not to be the case and it is believed that secretion is mainly controlled by the Cl– conductance of the luminal membrane. We have examined this question in a study of isolated in vitro perfused rectal gland tubules (RGT). Three types of measurements were performed: (1) measurements of [Ca2+]i by the fura-2 technique; (2) measurements of transepithelial electrical parameters, i.e. transepithelial voltage (V te), transepithelial resistance (R te), the equivalent short-circuit current (I sc) and the voltage across the basolateral membrane (V bl), and (3) whole-cell patch-clamp measurements of cellular voltage (V m), conductance (G m) and membrane capacitance (C m). The data indicates that carbachol (CCH) increases [Ca2+]i by increasing store release and Ca2+ influx. Other agonists, producing cytosolic cAMP, also increased [Ca2+] by enhancing Ca2+ influx. CCH hyperpolarized these cells and enhanced G m significantly. The effect of CCH on V te and I sc was most marked under control conditions and disappeared in RGT otherwise stimulated by agonists that lead to cAMP production. It is concluded that [Ca2+]i plays a major role in the stimulation of NaCl secretion in RGT by enhancing the basolateral K+ conductance. cAMP-producing agonists enhance [Ca2+]i by increased Ca2+ influx. CCH releases Ca2+ from respective stores. CCH, unlike the cAMP-producing agonists, only increases basolateral K+ conductance. It modulates secretion especially under conditions in which the cAMP pathway is not fully activated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...