Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • self-assembled monolayer of thiols  (1)
  • stick-slip motion  (1)
  • 1
    ISSN: 1573-2711
    Schlagwort(e): lateral force microscopy ; poly(tetrafluoroethylene) ; frictional anisotropy ; stick-slip motion ; molecular imaging
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Maschinenbau
    Notizen: Abstract Lateral force microscopy (LFM) studies of poly(tetrafluoroethylene) (PTFE) films with molecular resolution are reported. Thin PTFE layers with a high degree of orientation were obtained by pressing and sliding a block of polymer on a clean, heated muscovite mica substrate. LFM nanographs obtained on these films by scanning at directions between ca. 40 and 90° with respect to the film orientation direction, i.e. with respect to the direction of the polymer chains, showed a “stick-slip” type frictional motion of the LFM probe tip at the molecular level. The friction force observed at constant load decreased with decreasing scan angles. Chain-chain packing distances obtained by LFM and contact-mode atomic force microscopy were the same to within the experimental error and had a value of 5.8 Å. Dual-mode contact AFM/LFM imaging was also performed by scanning in the chain direction. Here LFM nanographs showed no distinct “stick-slip” phenomenon. The contact mode AFM images, however, exhibited clear molecular resolution with the expected chain-chain periodicity. The disappearance of the “stick” component in LFM scans performed in the chain direction was attributed to the smooth surface of PTFE on the molecular scale.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2483-2492 
    ISSN: 0887-6266
    Schlagwort(e): low-density polyethylene ; surface modification of polymers ; scanning force microscopy ; self-assembled monolayer of thiols ; chemical force microscopy ; Physics ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Notizen: In this article, we present the results of a study on the surface properties of chromic acid-oxidized low-density polyethylene (LDPE) by scanning force microscopy (SFM) and contact angle measurements. LDPE films were surface modified by a chromic acid treatment with subsequent annealing in argon and reconstruction in boiling water as described by Rasmussen, Stedronsky, and Whitesides [J. Am. Chem. Soc., 99, 4736 (1977)]. The LDPE oxidation in chromic acid was monitored in situ by contact mode SFM. Initially stacks of lamellae became exposed, and at later stages a granular morphology was observed. By tapping mode SFM, the sample roughness was shown to increase during the first 10 min of oxidation from initially ca. 20 nm to ca. 50 nm. Gold-coated SFM probes (tips) functionalized with self-assembled monolayers were used to determine the pull-off force characteristics in ethanol. Variations in the contact area between SFM tips and polymer surfaces that exposed sharp crystalline features were shown to obscure the results of pull-off force measurements. However, on annealed and subsequently reconstructed samples with lower roughness, the results of force measurements correlated well with the measured contact angles. Over the range of surface energies studied, the normalized pull-off force between carboxylic acid-modified tips and these smooth samples was shown to depend approximately linearly on the cosine of the contact angle. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2483-2492, 1998
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...