Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • solid-liquid phase equilibrium  (3)
  • compressibility  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 8 (1987), S. 671-680 
    ISSN: 1572-9567
    Keywords: bromobenzene ; chlorobenzene ; high pressure ; α-methylnaphthalene ; β-methylnaphthalene ; solid-liquid phase equilibrium ; solid solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Solid-liquid phase equilibria of the (α-methylnaphthalene + β-methylnaphthalene) and the (chlorobenzene + bromobenzene) systems have been investigated at temperatures from 278 to 343 K and pressures up to 500 MPa using a high-pressure optical vessel. The uncertainties of the measurements of temperature, pressure, and composition were within ±0.1 K, ±0.5 MPa, and ±0.001 mole fraction, respectively. In both systems, the freezing and melting pressures at a constant composition increase almost linearly with increasing temperatures. In the former system, where the two components can form a solid solution with one another to a limit extent, the eutectic point shifts to a higher temperature and to a α-methylnaphthalene-rich composition with increasing pressures. In the latter system, where the two components are completely soluble in each other in the solid phase, the freezing points of all mixtures lie between those of the pure components at each pressure. It is found that the coexistence curves obtained can be expressed by a quadratic equation in pressure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 10 (1989), S. 857-870 
    ISSN: 1572-9567
    Keywords: compressibility ; density ; fluorocarbon oil ; free-volume equation ; high pressure ; perfluoropolyether ; specific volume ; Tait equation ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract New experimental data on the density and viscosity of linear, unbranched perfluoropolyethers are presented at temperatures from 273 to 333 K and pressures up to 180 MPa. The measurements were carried out by a high-pressure burrette apparatus and a falling-cylinder viscometer. The uncertainties of the measurements are estimated to be less than 0.09% for the specific volume and 2.5% for the viscosity. The P-V data at each temperature are correlated satisfactorily by the Tait equation. The viscosity data are also analyzed and correlated with pressure or molar volume by several empirical and theoretical equations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 8 (1987), S. 415-424 
    ISSN: 1572-9567
    Keywords: benzene ; cyclohexane ; eutectic point ; high pressure ; solid-liquid phase equilibrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Solid-liquid phase equilibria of the benzene + cyclohexane system have been investigated experimentally at temperatures from 278 to 323 K and pressures up to 500 MPa using a newly designed optical vessel. The uncertainties of the measurements of temperature, pressure, and composition are within ±0.1 K, ±0.5 MPa, and ±0.001 mole fraction, respectively. The solid-liquid equilibrium pressure at a constant composition increases almost linearly with increasin temperature. The eutectic point shifts to a higher temperature and to a benzenerich composition with increasing pressure. This trend is found to agree with the direction predicted by the van Laar equation. The solid-liquid coexistence curves can be expressed by the Wilson equation with a mean deviation of 0.007 and a maximum deviation of 0.029 in mole fraction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 9 (1988), S. 61-71 
    ISSN: 1572-9567
    Keywords: benzene ; high pressure ; 2-methyl-2-propanol ; solid-liquid phase equilibrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Solid-liquid phase equilibria of the benzene + 2-methyl-2-propanol system have been investigated at temperatures from 278 to 323 K and pressures up to 300 MPa using a high-pressure optical vessel. The uncertainties of the measurements of temperature, pressure and composition are within ±0.1 K, ±0.5 MPa, and ±0.001 mole fraction, respectively. The freezing pressure at a constant composition increases monotonously with pressure. The eutectic point shifts to a higher temperature and benzene-rich composition with increasing pressure. In order to describe the pressure-temperature-composition relation of high-pressure solid-liquid phase equilibria, a new simple equation has been proposed as follows: $$In x_i (P,T) = - \frac{1}{{RT}}\{ C(T)[P - B(T)] + D(T)[P^2 - B(T)^2 ]\} $$ where B, C, and D are the temperature-dependent coefficients and are expressed by the polynomials of reciprocal of temperature. It is found that the solid-liquid coexistence curves of both eutectic systems and solid-solution systems can be correlated satisfactorily by this equation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 8 (1987), S. 47-70 
    ISSN: 1572-9567
    Keywords: alcohols ; aqueous mixtures ; butanols ; compressibility ; ethanol ; excess volume ; high pressure ; methanol ; propanols ; specific volume ; Tait equation ; water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The specific volumes of C1-C4 alcohols and binary mixtures of water with methanol, ethanol, 1-propanol, 2-propanol, and 2-methyl-2-propanol are presented as functions of temperature, pressure, and composition. The measurements were carried out using a modified Adams piezometer and a high-pressure burette method in a temperature range from 283.15 to 348.15 K at pressures up to 350 MPa. The uncertainties in the specific volume obtained are estimated to be less than 0.09%. The specific volumes of the pure alcohols and their mixtures with water are found to decrease monotonously with increasing pressure. The numerical P-V relations at each temperature and composition are correlated satisfactorily as a function of pressure by the Tait equation. Definite inflections appear on the isobars of isothermal compressibility or partial molar volume versus composition of alcohol + water mixtures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...