Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4862
    Keywords: Beam propagation ; bimetallic weld ; Gauss-Hermite beam model ; finite element method ; ultrasonics ; anisotropic medium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mathematics
    Notes: Abstract In this paper, predictions of two models for the propagation of ultrasonic beams through a two-dimensional, bimetallic weld geometry are compared. The finite element method can predict beam propagation through quite general geometry with high accuracy. This model, however, requires significant computational time. On the other hand, the approximate Gauss-Hermite model offers considerably greater computational speed, but has lower accuracy in certain regions and cannot treat the most general geometries and inhomogeneities in material properties. This paper compares the performances of the two models for the case of the two-dimensional, bimetallic weld consisting of multiple layers, some of which have anisotropic properties. It is found that the results of the two models are in good agreement in the vicinity of the central ray, and that the deviation increases as one moves away from the axis. Also, as the beam propagates through multiple interfaces, the accuracy of the Gauss-Hermite solution decreases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nondestructive evaluation 4 (1984), S. 107-123 
    ISSN: 1573-4862
    Keywords: ultrasonics ; transducers ; focusing ; refractior ; NDE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mathematics
    Notes: Abstract A scalar theory of the propagation of Gaussian ultrasonic beams through lenses and interfaces is presented. For radiation into a fluid, the Fresnel approximation is employed to derive the laws of propagation of Guassian beams (previously employed in the analysis of coherent optical systems). These are then generalized to situations commonly found in nondestructive evaluation by treating the effects of propagation through lenses and through curved interfaces at oblique incidence. A numerical example illustrates the ease with which insight into diffraction phenomena for complex geometries can be gained by this approach. The limitations imposed on the theory by aberrations and the scalar assumption are discussed, and the relationship of the Gaussian theory to the radiation of piston transducers is explored.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of nondestructive evaluation 4 (1984), S. 177-196 
    ISSN: 1573-4862
    Keywords: Interfaces ; ultrasonics ; partial contact ; quasi-static
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mathematics
    Notes: Abstract A quasi-static model for the ultrasonic transmission and reflection at imperfect interfaces is developed. The interface is represented by a distributed spring, determined by the change in static compliance of the medium with respect to one with a perfect interface, and a distributed mass, representing excess mass at the interface. Comparison of the model predictions to exact solutions for two simple cases illustrates its accuracy at low frequencies. The spring stiffnesses can be derived from existing solutions for the elastic displacement of materials containing cracks and inclusions under static load. Results for a variety of cases are reviewed. Applications of the model to study the characteristics of partially contacting surfaces in several problem areas of current interest are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...