Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 14 (1996), S. 503-509 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The HED particle detector of the ERNE experiment to be flown on the SOHO spacecraft is unique compared to the earlier space-born detectors in its high directional resolution (better than 2°, depending on the track inclination). Despite the fixed view cone due to the three-axis stabilization of the spacecraft, the good angular and temporal resolution of the detector provides a new kind of opportunity for monitoring in detail the development of the anisotropies pertaining, for example, to the onset of SEP events, or passage of shock fronts related to gradual events. In order to optimize the measurement parameters, we have made a preflight simulation study of the HED anisotropy measurement capabilities. The purpose was to prove the feasibility of the selected measurement method and find the physical limits for the HED anisotropy detection. The results show HED to be capable of detecting both strong anisotropies related to impulsive events, and smoother anisotropies associated with gradual events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 16 (1998), S. 921-930 
    ISSN: 0992-7689
    Keywords: Interplanetary physics ; Energetic particles ; Solar physics, astrophysics and astronomy ; Flares and mass ejections
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We consider the prolonged injection of the high-energy (〉 10 MeV) protons during the three successive events observed by GOES in October 1989. We apply a solar-rotation-stereoscopy approach to study the injection of the accelerated particles from the CME-driven interplanetary shock waves in order to find out how the effectiveness of the particle acceleration and/or escape depends on the angular distance from the shock axis. We use an empirical model for the proton injection at the shock and a standard model of the interplanetary transport. The model can reproduce rather well the observed intensity-time profiles of the October 1989 events. The deduced proton injection rate is highest at the nose of the shock; the injection spectrum is always harder near the Sun. The results seem to be consistent with the scheme that the CME-driven interplanetary shock waves accelerate a seed particle population of coronal origin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract During solar flares and coronal mass ejections, nuclei and electrons accelerated to high energies are injected into interplanetary space. These accelerated particles can be detected at the SOHO satellite by the ERNE instrument. From the data produced by the instrument, it is possible to identify the particles and to calculate their energy and direction of propagation. Depending on variable coronal/interplanetary conditions, different kinds of effects on the energetic particle transport can be predicted. The problems of interest include, for example, the effects of particle properties (mass, charge, energy, and propagation direction) on the particle transport, the particle energy changes in the transport process, and the effects the energetic particles have on the solar-wind plasma. The evolution of the distribution function of the energetic particles can be measured with ERNE to a better accuracy than ever before. This gives us the opportunity to contribute significantly to the modeling of interplanetary transport and acceleration. Once the acceleration/transport bias has been removed, the acceleration-site abundance of elements and their isotopes can be studied in detail and compared with spectroscopic observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Particle fluxes and pitch angle distributions of relativistic solar protons at Earth's orbit have been determined by Monte Carlo calculations. The analysis covers two hours after the release of the particles from the Sun and total of 8 × 106 particle trajectories were simulated. The pitch angle scattering was assumed to be isotropic and the scattering mean free path was varied from 0.1 to 4 AU. The intensity-time profiles after a delta-like injection from the Sun show that the interplanetary propagation is clearly non-diffusive at scattering mean-free paths above 0.5 AU. All pitch angle distributions have a steady minimum at 90 °, and they become similar about 20 min after the arrival of first particles. As an application, the solar injection profile and the interplanetary scattering mean-free path of particles that gave rise to the GLE on 7 May, 1978 were determined. In contrast to the values of 3–5 AU published by other authors, the average scattering mean-free path was found to be about 1 AU.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 165 (1996), S. 205-208 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This paper is designed to bring to the attention the fact that the effect of focusing of solar energetic particles is always essential as compared with scattering, no matter how small the value of the mean free path may be. That is why, an ordinary (‘focusing-free’) diffusion approach can not be applied to the solar cosmic ray transport. In the case of high-energy solar particles, the focused diffusion is demonstrated to lead to a power law decay of energetic particle intensity much like an ordinary diffusion. However, the power law index of the decay is ‘renormalized’ by the focusing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The energy spectra of the anomalous components of helium, nitrogen and oxygen have been measured by the ERNE experiment on board the SOHO spacecraft. During February 28–April 30, 1996, the maximum intensity of anomalous helium was found to be 3.8 × 10-5 cm-2 sr-1 s-1 (MeV nucl-1)-1 in the energy range 10–15 MeV nucl-1. During the period January 26–April 30, 1996, the maximum oxygen intensity was 1.2 × 10-5 cm-2 sr-1 s-1 (MeV nucl-1)-1 at 4–7 MeV nucl-1, and the maximum nitrogen intensity 1.7 × 10-6 cm-2 sr-1 s-1 (MeV nucl-1)-1 at 4–9 MeV nucl-1. These peak intensities are at the same level as two solar cycles ago in 1977, but significantly higher than in 1986. This gives observational evidence for a 22-year solar modulation cycle. A noteworthy point is that the spectra of anomalous nitrogen and oxygen appear to be somewhat broader than in 1977.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A solar energetic particle event was observed on 9 July 1996, by the ERNE sensors LED and HED on board the SOHO spacecraft. The arrival of the first protons in the energy range 〉20 MeV took place at 09:55 UT, 43 min after the maximum in the X-ray and Hα radiation of a flare located at S10 W30. The rise phase of the particle intensities at all energies was exceptionally rapid. At 12:50 UT, the intensities dropped in all energy channels. Simultaneously, the magnetic field instrument MFI on board WIND, not far from SOHO, detected a sharp and large change in the magnetic field direction. The analysis of the directional measurements of ERNE in the energy range 14–17 MeV shows the presence of a strong flux anisotropy during the whole period 10:10–12:50 UT. From 12:50 UT until about 16:00 UT, the directional analysis of the proton fluxes gives only a weak anisotropy at the limit of the sensor resolution. Later on, the flux anisotropy was found to recur, indicating a continuous injection of particles into the flux tubes connected to the SOHO spacecraft. These experimental results lead to strict limits on particle injection and transport models. The first period of the anisotropy and its recurrent phase cover 24 hours. This suggests an extended injection of particles. The strength and stability of the anisotropy indicate that, during these periods, SOHO was in an interplanetary sector where the particle transport was almost scatter-free. On the other hand, during the intermediate 3-hr period, we observed particles which traveled in a sector of diffusive transport or which were retarded by magnetic field disturbances not far from the observation site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-093X
    Keywords: solar wind ; interplanetary hydrogen ; interstellar wind
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract On board the SOHO spacecraft poised at L1 Lagrange point, the SWAN instrument is mainly devoted to the measurement of large scale structures of the solar wind, and in particular the distribution with heliographic latitude of the solar wind mass flux. This is obtained from an intensity map of the sky Lymanα emission, which reflects the shape of the ionization cavity carved in the flow of interstellar H atoms by the solar wind. The methodology, inversion procedure and related complications are described. The subject of latitude variation of the solar wind is shortly reviewed: earlier Lymanα results from Prognoz in 1976 are confirmed by Ulysses. The importance of the actual value of the solar wind mass flux for the equation of dynamics in a polar coronal hole is stressed. The instrument is composed of one electronic unit commanding two identical Sensor Units, each of them allowing to map a full hemisphere with a resolution of 1°, thanks to a two-mirrors periscope system. The design is described in some details, and the rationale for choice between several variants are discussed. A hydrogen absorption cell is used to measure the shape of the interplanetary Lymanα line and other Lyman α emissions. Other types of observations are also discussed : the geocorona, comets (old and new), the solar corona, and a possible signature of the heliopause. The connexion with some other SOHO instruments, in particular LASCO, UVCS, SUMER, is briefly discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-093X
    Keywords: solar physics ; cosmic rays ; solar flares ; coronal mass ejections
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Energetic and Relativistic Nuclei and Electron (ERNE) experiment will investigate the solar atmosphere and the heliosphere by detecting particles produced in various kinds of energy release processes. ERNE is at the upper end in energy among the SOHO particle instruments. The instrument will measure the energy spectra of elements in the range Z=1–30. The energy coverage varies dependent on the particle species from a few MeV/n up to a few hundred MeV/n and electrons from 2 to 50 MeV. At high energies, ERNE records also the direction of the incident particles for accurate measurements of the pitch angle distribution of the ambient flux within the viewing cone. Especially the isotope identification capability has been one of the instrument design goals, thus providing new data regarding various fundamental questions in solar physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 166 (1996), S. 135-158 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This paper presents an integrated analysis of GOES 6, 7 and neutron monitor observations of solar cosmic-ray event following the 1990 May 24 solar flare. We have used a model which includes particle injection at the Sun and at the interplanetary shock front and particle propagation through the interplanetary medium. The model does not attempt to simulate the physical processes of coronal transport and shock acceleration, therefore the injections at the Sun and at the shock are represented by source functions in the particle transport equation. By fitting anisotropy and angle-average intensity profiles of high-energy (〉30 MeV) protons as derived from the model to the ones observed by neutron monitors and at GOES 6 and 7, we have determined the parameters of particle transport, the injection rate and spectrum at the source. We have made a direct fit of uncorrected GOES data with both primary and secondary proton channels taken into account. The 1990 May 24–26 energetic proton event had a double-peaked temporal structure at energies ∼ 100 MeV. The Moreton (shock) wave nearby the ‘flare core’ was seen clearly before the first injection of accelerated particles into the interplanetary medium. Some (correlated with this shock) acceleration mechanism which operates in the solar corona at a height up to one solar radius is regarded as a source of the first (prompt) increase in GOES and neutron monitor counting rates. The proton injection spectrum during this increase is found to be hard (spectral index γ ≈ 1.6) at lower energies (∼ 30 MeV) with a rapid steepening above 300 MeV. Large values of the mean free path (λ ≈ 1.8 AU for 1 GV protons in the vicinity of the Earth) led to a high anisotropy of arriving protons. The second (delayed) proton increase was presumably produced by acceleration/injection of particles by an interplanetary shock wave at height of ≈ 10 solar radii. Our analysis of the 1990 May 24–26 event is in favour of the general idea that a number of components of energetic particles may be produced while the flare process develops towards larger spatial/temporal scales.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...