Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2000-2004  (2)
Materialart
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 38 (2000), S. 0 
    ISSN: 1745-6584
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Energietechnik , Geologie und Paläontologie
    Notizen: Nitrate is now recognized as a widespread ground water contaminant, which has led to increased efforts to control and mitigate its impacts. This study reports on the long-term performance of four pilot-scale field trials in which reactive porous barriers were used to provide passive in situ treatment of nitrate in ground water. At two of the sites (Killarney and Borden), the reactive barriers were installed as horizontal layers underneath septic system infiltration beds; at a third site (Long Point), a barrier was installed as a vertical wall intercepting a horizontally migrating septic system plume; and at the fourth site (North Campus), a barrier was installed as a containerized subsurface reactor treating farm field drainage water. The reactive media consisted of 15% to 100% by volume of waste cellulose solids (wood mulch, sawdust, leaf compost), which provided a carbon source for heterotrophic denitrification. The field trials have been in semicontinuous operation for six to seven years at hydraulic loading rates ranging from six to 2000 L/day. Trials have been successful in attenuating influent NO3- (or NO3-+ NH4+ at Borden) concentrations averaging from 4.8 mg/L N at North Campus to 57 mg/L N at Killarney, by amounts averaging 80% at Killarney, 74% at Borden, 91 % at Long Point, and 58% at North Campus. Nitrate consumption rates were temperature dependent and ranged from 0.7 to 32 mg L N/day, but did not deteriorate over the monitoring period. Furthermore, mass-balance calculations indicate that carbon consumption by heterotrophic denitrification has so far used only about 2% to 3% of the initial carbon mass in each case. Results suggest that such barriers should be capable of providing NO3- treatment for at least a decade or longer without carbon replenishment.Reactive barriers have now been used to treat nitrate contamination from a variety of sources including septic systems, agricultural runoff, landfill leachate, and industrial operations. This demonstration of successful long-term operation should allow this technology to become more widely considered for nitrate remediation, particularly at sites where passive treatment requiring a minimum of maintenance is desired.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 41 (2003), S. 0 
    ISSN: 1745-6584
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Energietechnik , Geologie und Paläontologie
    Notizen: Review of phosphate behavior in four mature septic system plumes on similar textured sand has revealed a strong correlation between carbonate mineral content and phosphate concentrations. A plume on calcareous sand (Cambridge site, 27 wt % CaCO3 equiv.) has proximal zone PO4 concentrations (4.8 mg/L P average) that are about 75% of the septic tank effluent value, whereas three plumes on noncalcareous sand (Muskoka, L. Joseph, and Nobel sites, 〈1 wt % CaCO3 equiv.) have proximal zone phosphate concentrations (〈0.1 mg/L P) that are consistently less than 2% of the effluent values. Phosphate attenuation at the noncalcareous sites appears to be an indirect result of the development of acidic conditions (site average pH 3.5 to 5.9) and elevated Al concentrations (up to 24 mg/L), which subsequently causes the precipitation of Al-P minerals such as variscite (AlPO4. 2H2O). This is supported by scanning electron microscope analyses, which show the widespread occurrence of (Al+P)—rich secondary mineral coatings on sand grains below the infiltration beds. All of these septic systems are more than 10 years old, indicating that these attenuation reactions have substantial longevity.A field lysimeter experiment demonstrated that this reaction sequence can be readily incorporated into engineered waste water treatment systems. We feel this important P removal mechanism has not been adequately recognized, particularly for its potential significance in reducing P loading from septic systems in lakeshore environments.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...