Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Industrial Chemistry and Chemical Engineering  (1)
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Applied Organometallic Chemistry 11 (1997), S. 181-194 
    ISSN: 0268-2605
    Schlagwort(e): synthesis ; silazanes ; polymer pyrolysis ; non-oxide ceramics ; Si3N4 ; SiC ; crystallization ; ceramic matrix composites ; Chemistry ; Industrial Chemistry and Chemical Engineering
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: The goal of this investigation was to optimize the synthesis of silazane-based polymers for processing fibre-reinforced ceramic matrix composites (CMCs). Liquid oligomeric silazanes were synthesized by ammonolysis of chlorosilanes and characterized spectroscopi- cally (FTIR, NMR) as well as by elemental analysis. The silazanes were obtained in high yield and purity. Different functional groups (system S1: Si - H, Si - CH3, Si - CH=CH2) and different degrees of branching in the Si - N backbone [system S2; Si(NH)3, Si(NH)2] were realized in order to study the properties of the silazanes that are dependent on the molecular structure.For processing ceramics via pyrolysis of pre-ceramic oligomers, molecular weight, rheological behaviour, thermosetting and ceramic yield were investigated systematically and correlated with the molecular structure of the silazanes. Low molecular weights (500-1000 g mol-1) as well as low viscosity values (0.1-20 Pa s) enable processing of the silazanes in the liquid phase without any solvent. Due to the latent reactivity of the functional groups, curing of the polymers via hydrosilylation is achieved.Structural changes and weight loss during polymer curing as well as the organic/inorganic transition were monitored by FTIR spectroscopy and differential thermogravimetric analysis. With increasing temperature (room temperature to 800 °C) the hydrogen content decreases from 7 to 〈 0.5 wt% due to the formation of gaseous molecules (NH3, CH4, H2). High ceramic yields up to 80% were reached by branching the oligomers, thus reducing the amount of volatile precursor fragments.Up to 1300 °C, ceramic materials remained amorphous to X-rays. At higher temperatures (1400-1800 °C) either SiC or SiC/Si3N4 composites were selectively crystallized, depending on the pyrolysis conditions. The utility of the optimized precursors for CMCs has been demonstrated by infiltration of fibre preforms and subsequent pyrolysis. © 1997 by John Wiley & Sons, Ltd.
    Zusätzliches Material: 13 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...