Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-1106
    Schlagwort(e): Intralaminar nuclei ; Neocortex ; Somatosensory ; NMDA ; 2APV ; Thalamo-cortical
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The nature of spontaneous unitary activity of rat neocortex was investigated during slow wave sleep and urethane anaesthesia. Neurones in layer IV and V locations fired in a burst-pause pattern at a low burst repetition rate (0.5–4 per second) during both stage 3/4 sleep and urethane anaesthesia. Occasionally an alternative mode of firing (spindle clusters), associated with focal spindle wave activity, was also found to occur in both states. Using dual microelectrode implants it was found that the onset times of bursts (but not spindle clusters), coincided in the same and opposing cortices, whether in functionally similar or disparate areas. The highest probability was that burst onsets occurred simultaneously (resolution =2.56 ms, interquartile range=40 ms). Spontaneous unitary activity was investigated in the thalamus for temporal correlation with spontaneous unitary activity in neocortex under urethane anaesthesia. Neurones of the anterior intralaminar group (aIL) consistently fired in a burst-pause pattern such that each aIL burst showed a strong tendency to precede a cortical burst. Unilateral electrical stimulation of the aIL nuclei evoked widespread bilateral entrainment of cortical bursts. In contrast stimulation of VP1, or cutaneous sites, evoked only short duration spike responses together with burst abolition in the appropriate restricted Sm1 area. Ionophoresis of NMDA (N-Methyl D-Aspartate) onto Sm1 neurones increased the probability of cortical burst responses to aIL stimulation in addition to decreasing the latency by 20–40 ms (n=11). lonophoresis of 2APV (2-amino 5-phosphono valeric acid) caused simultaneous abolition of spontaneous cortical bursts and bursts evoked by aIL stimulation. Short latency responses to cutaneous and VP1 stimulation were unaffected by ionophoresis of 2APV sufficient to cause burst elimination, suggesting that this pathway does not operate via a 2APV sensitive receptor mechanism. Anatomical features of the aIL nuclei and their overall cortical projection pattern are discussed in relationship to these findings. The activation of cortical NMDA/APV sensitive receptors by aIL afferents in the “spontaneous” generation of bursts in cortical cells is discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1106
    Schlagwort(e): Neocortex ; NMDA ; 2APV ; Somatosensory
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Spontaneous activity of single neurones in neocortex was sampled using pairs of microelectrodes in rats anaesthetised with urethane. In confirmation of previous studies, many cells recorded from middle layers characteristically fired in bursts, the onset times of which were synchronous both unilaterally and bilaterally. Iontophoresis of 2APV onto such cells either caused an abolition of bursts or a reduction in spikes per burst. In the latter case action potentials which occurred later in the burst were preferentially abolished. Iontophoresis of NMDA onto the same cells caused a prolongation of bursts with minimal effect on intraburst interspike interval. In interactive trials with the two drugs the effect of NMDA could be abolished by 2APV, and NMDA counteracted the effect of 2APV. It is concluded that spontaneous burst generation in neocortex during urethane anaesthesia is generated through a cortical NMDA/2APV-sensitive receptor mechanism.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...