Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2015-2019  (36)
  • 1995-1999
  • 2017  (13)
  • 2016  (23)
Datenquelle
Erscheinungszeitraum
  • 2015-2019  (36)
  • 1995-1999
Jahr
Sprache
  • 11
    Publikationsdatum: 2020-08-05
    Beschreibung: The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.
    Sprache: Englisch
    Materialart: conferenceobject , doc-type:conferenceObject
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2020-11-17
    Beschreibung: Real world routing problems, e.g., in the airline industry or in public and rail transit, can feature complex non-linear cost functions. An important case are costs for crossing regions, such as countries or fare zones. We introduce the shortest path problem with crossing costs (SPPCC) to address such situations; it generalizes the classical shortest path problem and variants such as the resource constrained shortest path problem and the minimum label path problem. Motivated by an application in flight trajectory optimization with overflight costs, we focus on the case in which the crossing costs of a region depend only on the nodes used to enter or exit it. We propose an exact Two-Layer-Dijkstra Algorithm as well as a novel cost-projection linearization technique that approximates crossing costs by shadow costs on individual arcs, thus reducing the SPPCC to a standard shortest path problem. We evaluate all algorithms’ performance on real-world flight trajectory optimization instances, obtaining very good à posteriori error bounds.
    Sprache: Englisch
    Materialart: reportzib , doc-type:preprint
    Format: application/pdf
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2020-08-05
    Beschreibung: Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem.
    Sprache: Englisch
    Materialart: conferenceobject , doc-type:conferenceObject
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2020-08-05
    Beschreibung: Wir stellen einen mathematischen Optimierungsansatz zur Berechnung von periodischen Taktfahrplänen vor, bei dem die Umsteigezeiten unter Berücksichtigung des Passagierverhaltens minimiert werden. Wir untersuchen damit den Einfluss wichtiger Systemparameter und Verhaltensmuster auf die Beförderungsqualität.
    Sprache: Deutsch
    Materialart: reportzib , doc-type:preprint
    Format: application/pdf
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2020-08-05
    Beschreibung: Sustainable manufacturing is driven by the insight that the focus on the economic dimension in current businesses and lifestyles has to be broadened to cover all three pillars of sustainability: economic development, social development, and environmental protection.
    Sprache: Englisch
    Materialart: bookpart , doc-type:bookPart
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2020-10-14
    Beschreibung: Periodic timetabling is an important strategic planning problem in public transport. The task is to determine periodic arrival and departure times of the lines in a given network, minimizing the travel time of the passengers. We extend the modulo network simplex method, a well-established heuristic for the periodic timetabling problem, by integrating a passenger (re)routing step into the pivot operations. Computations on real-world networks show that we can indeed find timetables with much shorter total travel time, when we take the passengers' travel paths into consideration.
    Sprache: Englisch
    Materialart: reportzib , doc-type:preprint
    Format: application/pdf
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2020-09-25
    Beschreibung: We study the Flight Planning Problem for a single aircraft, which deals with finding a path of minimal travel time in an airway network. Flight time along arcs is affected by wind speed and direction, which are functions of time. We consider three variants of the problem, which can be modeled as, respectively, a classical shortest path problem in a metric space, a time-dependent shortest path problem with piecewise linear travel time functions, and a time-dependent shortest path problem with piecewise differentiable travel time functions. The shortest path problem and its time-dependent variant have been extensively studied, in particular, for road networks. Airway networks, however, have different characteristics: the average node degree is higher and shortest paths usually have only few arcs. We propose A* algorithms for each of the problem variants. In particular, for the third problem, we introduce an application-specific "super-optimal wind" potential function that overestimates optimal wind conditions on each arc, and establish a linear error bound. We compare the performance of our methods with the standard Dijkstra algorithm and the Contraction Hierarchies (CHs) algorithm. Our computational results on real world instances show that CHs do not perform as well as on road networks. On the other hand, A* guided by our potentials yields very good results. In particular, for the case of piecewise linear travel time functions, we achieve query times about 15 times shorter than CHs.
    Sprache: Englisch
    Materialart: conferenceobject , doc-type:conferenceObject
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2021-01-22
    Beschreibung: We investigate a graph theoretical problem arising in the automatic billing of a network toll. Given a network and a family of user paths, we study the graph segmentation problem (GSP) to cover parts of the user paths by a set of disjoint segments. The GSP is shown to be NP-hard but for special cases it can be solved in polynomial time. We also show that the marginal utility of a segment is bounded. Computational results for real-world instances show that in practice the problem is more amenable than the theoretic bounds suggest.
    Sprache: Englisch
    Materialart: reportzib , doc-type:preprint
    Format: application/pdf
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2020-08-05
    Beschreibung: Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain developing mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice (e.g. Cacchiani et al., 2014; Borndörfer et al., 2010), with a few notable exceptions. In this paper we address three individual success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will discuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that mathematical optimization can support the planning of railway resources. Thus, mathematical models and optimization can lead to a greater efficiency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.
    Sprache: Englisch
    Materialart: article , doc-type:article
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2020-08-05
    Beschreibung: The operation of railways gives rise to many fundamental optimization problems. One of these problems is to cover a given set of timetabled trips by a set of rolling stock rotations. This is well known as the Rolling Stock Rotation Problem (RSRP). Most approaches in the literature focus primarily on modeling and minimizing the operational costs. However, an essential aspect for the industrial application is mostly neglected. As the RSRP follows timetabling and line planning, where periodicity is a highly desired property, it is also desired to carry over periodic structures to rolling stock rotations and following operations. We call this complex requirement regularity. Regularity turns out to be of essential interest, especially in the industrial scenarios that we tackle in cooperation with DB Fernverkehr AG. Moreover, regularity in the context of the RSRP has not been investigated thoroughly in the literature so far. We introduce three regularity patterns to tackle this requirement, namely regular trips, regular turns, and regular handouts. We present a two-stage approach in order to optimize all three regularity patterns. At first, we integrate regularity patterns into an integer programming approach for the minimization of the operational cost of rolling stock rotations. Afterwards regular handouts are computed. These handouts present the rotations of the first stage in the most regular way. Our computational results (i.e., rolling stock rotations evaluated by planners of DB Fernverkehr AG) show that the three regularity patterns and our concept are a valuable and, moreover, an essential contribution to rolling stock rotation optimization.
    Sprache: Englisch
    Materialart: conferenceobject , doc-type:conferenceObject
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...