Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Acta mechanica 85 (1990), S. 79-97 
    ISSN: 1619-6937
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary The problem of radial diffusion of a fluid through a transversely isotropic non-linearly elastic thick spherical shell is studied. The anisotropic shell is also pre-stretched radially. The non-linear equations governing the diffusion through the shell are solved numerically. The effects of the anisotropy of the material and the pre-stretching on the process of diffusion are studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Acta mechanica 103 (1994), S. 63-78 
    ISSN: 1619-6937
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary The mechanics of flowing granular materials such as coal, sand, metal ores, etc., and their flow characteristics have received considerable attention in recent years as it has relevance to several important technological problems. In a number of instances, these materials are also heated prior to processing, or cooled after processing. The governing equations for the flow of granular materials, taking into account the heat transfer mechanism by conduction, are derived using a continuum model (cf. Goodman and Cowin [1], [2], Rajagopal and Massoudi [3]). For a fully developed flow of these materials down an inclined plane, the equations reduce to a system of coupled non-linear ordinary differential equations. The resulting boundary value problem is solved numerically and the results are presented for cases where the viscosity and thermal conductivity are assumed to be functions of the volume fraction. It is shown that the equations admit multiple solutions for certain values of the parameters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 927-941 
    ISSN: 0271-2091
    Keywords: Shear-thinning ; Shear-thickening ; Apparent viscosity ; Normal stress difference ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The problem of the steady flow of three classes of non-linear fluids of the differential type past a porous plate with uniform suction or injection is studied. The flow which is studied is the counterpart of the classical ‘asymptotic suction’ problem, within the context of the non-Newtonian fluid models. The non-linear differential equations resulting from the balance of momentum and mass, coupled with suitable boundary conditions, are solved numerically either by a finite difference method or by a collocation method with a B-spline function basis. The manner in which the various material parameters affect the structure of the boundary layer is delineated. The issue of paucity of boundary conditions for general non-linear fluids of the differential type, and a method for augmenting the boundary conditions for a certain class of flow problems, is illustrated. A comparison is made of the numerical solutions with the solutions from a regular perturbation approach, as well as a singular perturbation.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...