Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 19 (1994), S. 55-72 
    ISSN: 0887-3585
    Keywords: secondary structure prediction ; prediction of secondary structure class ; prediction of secondary structure content ; evolutionary information ; multiple alignment profiles ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Using evolutionary information contained in multiple sequence alignments as input to neural networks, secondary structure can be predicted at significantly increased accuracy. Here, we extend our previous three-level system of neural networks by using additional input information derived from multiple alignments. Using a position-specific conservation weight as part of the input increases performance. Using the number of insertions and deletions reduces the tendency for overprediction and increases overall accuracy. Addition of the global amino acid content yields a further improvement, mainly in predicting structural class. The final network system has a sustained overall accuracy of 71.6% in a multiple cross-validation test on 126 unique protein chains. A test on a new set of 124 recently solved protein structures that have no significant sequence similarity to the learning set confirms the high level of accuracy. The average cross-validated accuracy for all 250 sequence-unique chains is above 72%. Using various data sets, the method is compared to alternative prediction methods, some of which also use multiple alignments: the performance advantage of the network system is at least 6 percentage points in three-state accuracy. In addition, the network estimates secondary structure content from multiple sequence alignments about as well as circular dichroism spectroscopy on a single protein and classifies 75% of the 250 proteins correctly into one of four protein structural classes. Of particular practical importance is the definition of a position-specific reliability index. For 40% of all residues the method has a sustained three-state accuracy of 88%, as high as the overall average for homology modelling. A further strength of the method is greatly increased accuracy in predicting the placement of secondary structure segments. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 9 (1991), S. 56-68 
    ISSN: 0887-3585
    Keywords: secondary structure ; tertiary structure ; residue conservation ; sequence variability ; sequence profile ; folding units ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The database of known protein three-dimensional structures can be significantly increased by the use of sequence homology, based on the following observations. (1) The database of known sequences, currently at more than 12,000 proteins, is two orders of magnitude larger than the database of known structures. (2) The currently most powerful method of predicting protein structures is model building by homology. (3) Structural homology can be inferred from the level of sequence similarity. (4) The threshold of sequence similarity sufficient for structural homology depends strongly on the length of the alignment. Here, we first quantify the relation between sequence similarity, structure similarity, and alignment length by an exhaustive survey of alignments between proteins of known structure and report a homology threshold curve as a function of alignment length. We then produce a database of homology-derived secondary structure of proteins (HSSP) by aligning to each protein of known structure all sequences deemed homologous on the basis of the threshold curve. For each known protein structure, the derived database contains the aligned sequences, secondary structure, sequence variability, and sequence profile. Tertiary structures of the aligned sequences are implied, but not modeled explicity. The database effectively increases the number of known protein structures by a factor of five to more than 1800. The results may be useful in assessing the structural significance of matches in sequence database searches, in deriving preferences and patterns for structure prediction, in elucidating the structural role of conserved residues, and in modeling three-dimensional detail by homology.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 14 (1992), S. 213-223 
    ISSN: 0887-3585
    Keywords: protein folding ; protein structure ; rotamers ; simulated annealing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An unknown protein structure can be predicted with fair accuracy once an evolutionary connection at the sequence level has been made to a protein of known 3-D structure. In model building by homology, one typically starts with a backbone framework, rebuilds new loop regions, and replaces nonconserved side chains. Here, we use an extremely efficient Monte Carlo algorithm in rotamer space with simulated annealing and simple potential energy functions to optimize the packing of side chains on given backbone models. Optimized models are generated within minutes on a workstation, with reasonable accuracy (average of 81% side chain χ1 dihedral angles correct in the cores of proteins determined at better than 2.5 Å resolution). As expected, the quality of the models decreases with decreasing accuracy of backbone coordinates. If the backbone was taken from a homologous rather than the same protein, about 70% side chain X1 angles were modeled correctly in the core in a case of strong homology and about 60% in a case of medium homology. The algorithm can be used in automated, fast, and reproducible model building by homology. © 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 20 (1994), S. 216-226 
    ISSN: 0887-3585
    Keywords: evolutionary information ; multiple alignments ; neural networks ; protein structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Currently, the prediction of three-dimensional (3D) protein structure from sequence alone is an exceedingly difficult task. As an intermediate step, a much simpler task has been pursued extensively: predicting 1D strings of secondary structure. Here, we present an analysis of another 1D projection from 3D structure: the relative solvent accessibility of each residue. We show that solvent accessibility is less conserved in 3D homologues than is secondary structure, and hence is predicted less accurately from automatic homology modeling; the correlation coefficient of relative solvent accessibility between 3D homologues is only 0.77, and the average accuracy of predictions based on sequence alignments is only 0.68. The latter number provides an effective upper limit on the accuracy of predicting accessibility from sequence when homology modeling is not possible. We introduce a neural network system that predicts relative solvent accessibility (projected onto ten discrete states) using evolutionary profiles of amino acid substitutions derived from multiple sequence alignments. Evaluated in a cross-validation test on 238 unique proteins, the correlation between predicted and observed relative accessibility is 0.54. Interpreted in terms of a three-state (buried, intermediate, exposed) description of relative accessibility, the fraction of correctly predicted residue states is about 58%. In absolute terms this accuracy appears poor, but given the relatively low conservation of accessibility in 3D families, the network system is not far from its likely optimal performance. The most reliably predicted fraction of the residues (50%) is predicted as accurately as by automatic homology modeling. Prediction is best for buried residues, e.g., 86% of the completely buried sites are correctly predicted as having 0% relative accessibility. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 23 (1995), S. 295-300 
    ISSN: 0887-3585
    Keywords: automatic prediction of protein secondary structure and solvent accessibility ; neural networks ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Accuracy of predicting protein secondary structure and solvent accessibility from sequence information has been improved significantly by using information contained in multiple sequence alignments as input to a neural 'network system. For the Asilomar meeting, predictions for 13 proteins were generated automatically using the publicly available prediction method PHD. The results confirm the estimate of 72% three-state prediction accuracy. The fairly accurate predictions of secondary structure segments made the tool useful as a starting point for modeling of higher dimensional aspects of protein structure. © 1995 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 134-139 
    ISSN: 0887-3585
    Keywords: CASP2 ; fold-recognition ; HMM ; structure library ; remote homology ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We discuss how methods based on hidden Markov models performed in the fold-recognition section of the CASP2 experiment. Hidden Markov models were built for a representative set of just over 1,000 structures from the Protein Data Bank (PDB). Each CASP2 target sequence was scored against this library of HMMs. In addition, an HMM was built for each of the target sequences and all of the sequences in PDB were scored against that target model, with a good score on both methods indicating a high probability that the target sequence is homologous to the structure. The method worked well in comparison to other methods used at CASP2 for targets of moderate difficulty, where the closest structure in PDB could be aligned to the target with at least 15% residue identity. Proteins, Suppl. 1:134-139, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...