Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1432-2242
    Keywords: Key words Genetic map ; Physical map ; Map-based gene cloning ; Disease resistance ; Rice ; DNA markers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The recessive gene, xa13, confers resistance to Philippine race 6 (PXO99) of the bacterial blight pathogen Xanthomonas oryzae pv oryzae. Fine genetic mapping and physical mapping were conducted as initial steps in an effort to isolate the gene. Using nine selected DNA markers and two F2 populations of 132 and 230 plants, xa13 was fine-mapped to a genomic region 〈4 cM on the long arm of rice chromosome 8, flanked by two RFLP markers, RG136 and R2027. Four DNA markers, RG136, R2027, S14003, and G1149, in the target region were used to identify bacterial artificial chromosome (BAC) clones potentially harboring the xa13 locus from a rice BAC library. A total of 11 BACs were identified, forming four separate contigs including a single-clone contig, 29I3, associated with the RG136 STS marker, the S14003 contig consisting of four clones (44F8, 41O2, 12A16, and 12F20), the G1149 contig with two clones, 23D11 and 21H18, and the R2027 contig consisting of four overlapping clones, 42C23, 30B5, 6B7 and 21H14. Genetic mapping indicated that the xa13 locus was contained in the R2027 contig. Chromosomal walking on the R2027 contig resulted in two more clones, 33C7 and 14L3. DNA fingerprinting showed that the six clones of the R2027 contig were overlapping. Clone 44F8 hybridized with a single fragment from the clone 14L3, integrating the R2027 and S14003 contigs into a single contig consisting of ten BAC clones with a total size of approximately 330 kb. The physical presence of the xa13 locus in the contig was determined by mapping the ends of the BAC inserts generated by TAIL-PCR. In an F2 population of 230 plants, the BAC-end markers 42C23R and 6B7F flanked the xa13 locus. The probes 21H14F and 21H14R derived from BAC clone 21H14 were found to flank xa13 at a distance of 0.5 cM on either side, using a second F2 population of 132 plants. Thus, genetic mapping indicated that the contig and the 96-kb clone, 21H14, contained the xa13 locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1617-4623
    Keywords: Key words Mitochondria ; Gene transfer ; Ribosomal protein S10 ; Rice ; 5′ Untranslated region (UTR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mitochondrial ribosomal protein S10 (rps10) is encoded by the mitochondrial genome in potato and pea. Here we show that the rps10 gene is absent from the mitochondrial genome of rice and has been transferred to the nucleus. Cloning and transcriptional analysis show that there are two rps10 genes in the rice nuclear genome and that their transcripts differ in abundance. Western analysis detected the RPS10 protein in the soluble fraction of rice mitochondria, although neither RPS10 has any obvious N-terminal presequence for targeting to mitochondria. This result suggests that targeting information is present in the internal region of rice RPS10. Genomic sequence analysis indicated that each rps10 gene has an intron in the 5′ untranslated region (5′ UTR) and that these intron sequences are homologous to each other. This result strongly suggests that a duplication event occurred after transfer of the rps10 gene to the nucleus. The duplicated rps10 genes have since been translocated to different chromosomes, because the two rps10 genes were mapped on chromosomes 6 and 12 by RFLP analysis. Interestingly, the 5′ UTR and the intron of the rice rps10 genes are homologous to sequences found in several rice genes with various functions, such as osk4, EF-1β2 and RAG1, suggesting a common origin and a functional role for the 5′ UTR. Acquisition of the 5′ flanking region might have accelerated the activation of the mitochondrial rps10 gene which was transferred to the nuclear genome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...