Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2014-02-26
    Description: This paper introduces a scheme of deriving strong cutting planes for a general integer programming problem. The scheme is related to Chvatal-Gomory cutting planes and important special cases such as odd hole and clique inequalities for the stable set polyhedron or families of inequalities for the knapsack polyhedron. We analyze how relations between covering and incomparability numbers associated with the matrix can be used to bound coefficients in these inequalities. For the intersection of several knapsack polyhedra, incomparabilities between the column vectors of the associated matrix will be shown to transfer into inequalities of the associated polyhedron. Our scheme has been incorporated into the mixed integer programming code SIP. About experimental results will be reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-05
    Description: This paper is about {\em set packing relaxations\/} of combinatorial optimization problems associated with acyclic digraphs and linear orderings, cuts and multicuts, and vertex packings themselves. Families of inequalities that are valid for such a relaxation as well as the associated separation routines carry over to the problems under investigation.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-02-26
    Description: {\def\N{{\cal N}} \def\R{\hbox{\rm I\kern-2pt R}} \def\MN{{\rm I\kern-2pt N}} In this paper we study the following problem, which we call the weighted routing problem. Let be given a graph $G=(V,E)$ with non-negative edge weights $w_e\in\R_+$ and integer edge capacities $c_e\in\MN$ and let $\N=\{T_1,\ldots,T_N\}$, $N\ge 1$, be a list of node sets. The weighted routing problem consists in finding edge sets $S_1,\ldots,S_N$ such that, for each $k\in\{1,\ldots,N\}$, the subgraph $(V(S_k),S_k)$ contains an $[s,t]$-path for all $s,t\in T_k$, at most $c_e$ of these edge sets use edge $e$ for each $e\in E$, and such that the sum of the weights of the edge sets is minimal. Our motivation for studying this problem arises from the routing problem in VLSI-design, where given sets of points have to be connected by wires. We consider the weighted routing problem from a polyhedral point of view. We define an appropriate polyhedron and try to (partially) describe this polyhedron by means of inequalities. We briefly sketch our separation algorithms for some of the presented classes of inequalities. Based on these separation routines we have implemented a branch and cut algorithm. Our algorithm is applicable to an important subclass of routing problems arising in VLSI-design, namely to problems where the underlying graph is a grid graph and the list of node sets is located on the outer face of the grid. We report on our computational experience with this class of problem instances.}
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-02-26
    Description: {\def\N{{\mbox{{\rm I\kern-0.22emN}}}}In this paper we introduce a multivariate grading of the toric ideal associated with the integer program $min \{ cx : Ax = b, x \in \N^n \}$, and a truncated Buchberger algorithm to solve the program. In the case of $max \{ cx : Ax \leq b, x \leq u, x \in \N^n \}$ in which all data are non-negative, this algebraic method gives rise to a combinatorial algorithm presented in UWZ94}.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-02-26
    Description: We investigate dominance relations between basic semidefinite relaxations and classes of cuts. We show that simple semidefinite relaxations are tighter than corresponding linear relaxations even in case of linear cost functions. Numerical results are presented illustrating the quality of these relaxations.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-02-26
    Description: For a polyhedral cone $C=$ pos $\{a^1,\dots,a^m\}\subset R^d$, $a^i\in Z^d$, a subset of integral vectors $H(C)\subset C \cap Z^d$ is called a Hilbert basis of $C$ iff (i) each element of $C\cap Z^d$ can be written as a non-negative integer combination of elements of $H(C)$ and (ii) $H(C)$ has minimal cardinality with respect to all subsets of $C \cap Z^d$ for which (i) holds. We show that various problems related to Hilbert bases are hard in terms of computational complexity. However, if the dimension and the number of elements of the Hilbert basis are fixed, a Hilbert basis can always be computed in polynomial time. Furthermore we introduce a (practical) algorithm for computing the Hilbert basis of a polyhedral cone. The finiteness of this method is deduced from a result about the height of a Hilbert basis which, in particular, improves on former estimates.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-02-26
    Description: In this paper we continue the investigations in [GMW92a] for the \def\sbppo{Steiner tree packing polyhedron} \sbppo. We present several new classes of valid inequalities and give sufficient (and necessary) conditions for these inequalities to be facet-defining. It is intended to incorporate these inequalities into an existing cutting plane algorithm that is applicable to practical problems arising in the design of electronic circuits.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-03-16
    Description: We investigate the problem of partitioning the nodes of a graph under capacity restriction on the sum of the node weights in each subset of the partition. The objective is to minimize the sum of the costs of the edges between the subsets of the partition. This problem has a variety of applications, for instance in the design of electronic circuits and devices. We present alternative integer programming formulations for this problem and discuss the links between these formulations. Having chosen to work in the space of edges of the multicut, we investigate the convex hull of incidence vectors of feasible multicuts. In particular, several classes of inequalities are introduced, and their strength and robustness are analyzed as various problem parameters change.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-03-16
    Description: In this paper we consider the problem of $k$-partitioning the nodes of a graph with capacity restrictions on the sum of the node weights in each subset of the partition, and the objective of minimizing the sum of the costs of the edges between the subsets of the partition. Based on a study of valid inequalities, we present a variety of separation heuristics for so-called cycle, cycle with ears, knapsack tree and path-block-cycle inequalities. The separation heuristics, plus primal heuristics, have been implemented in a branch-and-cut routine using a formulation including the edges with nonzero costs and node variables. Results are presented for three classes of problems: equipartitioning problems arising in finite element methods and partitioning problems associated with electronic circuit layout and compiler design.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-02-26
    Description: {\def\N{{\mbox{{\rm I\kern-0.22emN}}}} Let a set $N$ of items, a capacity $F \in \N$ and weights $a_i \in \N$, $i \in N$ be given. The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy the inequality $$\sum_{i \in N} a_i x_i \leq F.$$ In this paper we present a linear description of the 0/1 knapsack polytope for the special case where $a_i \in \{\mu,\lambda\}$ for all items $i \in N$ and $1 \leq \mu 〈 \lambda \leq b$ are two natural numbers. The inequalities needed for this description involve elements of the Hilbert basis of a certain cone. The principle of generating inequalities based on elements of a Hilbert basis suggests further extensions.}
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...