Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. We have studied the effect of disrupting catabolite (de)repression genes SNF1, SNF4, and MIG1 on the cell cycle behavior of the CEN.PK122 wild type (WT) strain of Saccharomyces cerevisiae by flow cytometry in glucose-limited chemostat cultures or batch growth in the presence of different carbon sources. Through a combination of flow cytometry of propidium iodide–stained cells and mathematical modeling we showed that the deletion of the SNF4 gene provoked a decrease in the length of G1 with respect to the WT strain along with a smaller difference in the cell cycle length of parent and daughter cells. snf1 and mig1 mutants exhibited slightly shorter G1 respect to the WT. Additionally, in the mig1 mutant the cell cycle length of parent and daughter cells was slightly altered. The results obtained are in agreement with the view that the SNF4 gene is involved in the regulation of cell cycle in yeast.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 197-204 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Thermodynamic and kinetic calculations were performed in a model of mixed substrate metabolism. The model simulates the catabolic breakdown of a first substrate, glucose (S1), in the presence of a second substrate, formate (S2), which acts as an additional source of free energy. The principal results obtained with different relative rates of uptake of S2 allow to predict and interpret the following experimental observations: (1) the existence of increased ATP yields by mixed substrate utilization with a maximum ATP yield and optimum input (or molar) ratio for both substrates; (2) a greater assimilation of S1 which may be interpreted as a decreasing fraction of energy required for assimilation; (3) a decrease in ATP yields due to increasing energy demand for transport; (4) an increased assimilation of the carbon source (S1) as a function of increasing inputs of the additional energy source; (5) thermodynamic efficiency (η) defined as the ratio between the output power of ATP synthesis and the input catabolic power, increases for S2/S1 ratios ranging between 0.08 and 2 while for ratios higher than two a slight decrease of η was noticed; and (6) the observed maximum in ATP yield for optimum molar ratio of the two substrates corresponds to high η predicting that higher biomass yields may be obtained through a variable, high, η by chanelling fluxes through catabolic pathways with different ATP yields. During oscillatory behavior, maxima in fluxes were almost coincident with maxima in forces. Thus, the pattern of dissipation was not so advantageous as in the single substrate model under starvation conditions.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...