Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Numerous functional and hodological studies of the anterior ectosylvian visual area (AEV) of the cerebral cortex of the cat suggest that this area plays an important role in processing information about visual motion. In the present study, in cats with selective conduction block of Y fibres in one optic nerve, we have examined the extent of the excitatory convergence of Y (presumed ‘motion channel') and non-Y information channels on single neurons in AEV, as well as the contribution of the Y channel to the receptive field properties of AEV neurons. While in normal cats all neurons recorded from AEV were binocular, i.e. could be photically activated via either eye, in cats with selective conduction block of Y fibres in one optic nerve, a significant proportion (about 15%) of AEV cells could be photically activated only via the normal eye. In comparison to those in normal cats, the peak discharge rates of AEV neurons in the Y-blocked cats were drastically reduced not only when photic stimuli were presented via the Y-blocked eye, but also when they were presented via the normal eye. Selective block of Y input also resulted in a significant shift in velocity preferences towards the lower velocities. However, the direction selectivity indices of AEV neurons were not affected by selective Y block. Thus: (i) the responses of AEV neurons to a high velocity of motion are dependent on the integrity of the Y input; (ii) the ‘spontaneous' (i.e. not photically evoked) discharges of Y retinal ganglion cells exert a facilitatory influence on the responses of AEV cells to photic stimuli; (iii) although the responses of AEV neurons are dominated by the Y inputs, AEV neurons also receive significant non-Y excitatory inputs; and (iv) the strong direction selectivity revealed in most AEV neurons does not dependent on the integrity of Y input.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Clinical and experimental pharmacology and physiology 23 (1996), S. 0 
    ISSN: 1440-1681
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: 1. It has been postulated that the distinct parallel retinogeniculo-cortical information channels characterizing visual pathways of virtually all mammals are selectively linked to parallel motion, colour and/or form information processing ‘streams’ distinguishable within the primary visual cortices, extrastriate cortical areas of occipital lobes and the temporal and parietal visual cortices.2. Using selective pressure-blocking of the large-fibre channel (the so-called Y-channel) in the optic nerve of the cat, we have experimentally examined the ‘selective excitatory parallel links’ hypothesis. We conclude that the majority of neurons in the primary visual cortices (areas 17, 18) as well as in the two ‘higher order’ visual areas, area 21a and posteromedial lateral suprasylvian (PMLS) area, constituting, respectively, part of the ‘form’ and part of the ‘motion’ processing streams, receive their excitatory inputs from both Y- and non-Y-information channels. In areas 17, 18 and 21a (but not in PMLS area), there are, however, subpopulations of cells that apparently receive excitatory inputs from only one information channel.3. Review of the relevant work on the macaque monkey suggests that the situation is similar in the primate: that is, there is a substantial degree of excitatory convergence of different retino-geniculo-cortical information channels on single neurons in the primary visual cortices and the extrastriate cortices constituting parts of the form/colour or the motion processing streams.4. Despite this high degree of excitatory convergence of different information channels, the large-fibre channels (the Y-channel in the cat and the magnocellular or Y-like channel in macaque), are in both carnivores and primates the principal contributors to the motion processing cortical streams.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 2 (1990), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A fluorescent dye (usually fast blue or rhodamine tagged latex microspheres) was injected into cortical area 17 (or area 17 and the lateral part of area 18b) of adult and juvenile (15–22 day old) Sprague-Dawley albino rats. Another fluorescent dye (usually diamidino yellow) was injected into cortical areas 17, 18a and 18b of the opposite hemisphere. The injections involved only the cortical grey matter. After postinjection survival of 2–14 days the distribution of retrogradely labelled mesencephalic and prosencephalic cells was analysed. Both small and large injections labelled retrogradely a substantial number of cells in specific and nonspecific dorsal thalamic nuclei (lateral geniculate, lateral posterior, ventromedial, several intralaminar nuclei and nucleus Reuniens) as well as a small number of cells in the preoptic area of the hypothalamus and the mesencephalic ventral tagmental area (VTA). While labelled thalamic cells contained only the dye injected into the ipsilateral cortex, a small proportion of hypothalamic and VTA cells was labelled with the dye injected into the contralateral cortex. Virtually none of the cells in these areas were double labelled with both dyes. Both small and large injections labelled cells in the ipsilateral telencephalic magnocellular nuclei of the basal forebrain and the caudal claustrum. A substantial minority of labelled cells in these structures was labelled by the dye injected into the contralateral cortex. Furthermore, a small proportion (about 1%) of claustral cells projecting to the ipsilateral cortex were double labelled with both dyes. In several cortical areas ipsilateral to the injected area 17, associational neurons were intermingled with commissural neurons projecting to the contralateral visual cortex. A substantial proportion of associational neurons projecting to ipsilateral area 17 also projected to the contralateral visual cortex (associational-commissural neurons). Thus, in visual area 18a, the associational-commissural neurons were located in all laminae, with the exception of lamina 1 and the bottom of lamina 6, and constituted about 30% of the neurons projecting to ipsilateral area 17. In paralimbic association area 35/13, associational-commissural neurons were located in lamina 5 and constituted about 20% of neurons projecting to ipsilateral area 17. In the limbic area 29d, the associational-commissural neurons were located in laminae 4, 5 and the upper part of lamina 6 and constituted about 10% of the associational-commissural neurons projecting to ipsilateral area 17. In oculomotor area 8, double-labelled neurons were located in lamina 5 and constituted about 10% of the neurons projecting to ipsilateral area 17. Thus, it appears that the axons of mesencephalic and diencephalic neurons projecting to the visual cortex do not send collaterals into both hemispheres. The bihemispheric projection to the rat's visual cortex originates almost exclusively in the retinotopically organized cortical area 18a and in integrative cortical areas 35/13, 29d and 8.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 2 (1990), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Numerous cortical neurons in the juvenile and adult rat project to visual areas of both hemispheres whereas the vast majority of subcortical structures projecting to the visual cortex send strictly ipsilateral projections (Dreher et al., 1990). In the present study, the authors have sought to determine whether this pattern of axonal bifurcation in the connectivity of the visual areas undergoes a change during postnatal development. Two retrograde fluorescent dyes were used, fast blue (FB) and diamidino yellow (DY). Large multiple injections of one of the dyes were placed in all visual areas of one hemisphere and a small injection of the other dye was placed in area 17 of the opposite hemisphere. Labelled neurons were observed in subcortical and cortical structures on the side of the small injection. The experiments were performed on ten neonatal albino rat pups aged between 3 and 12 postnatal days (p.n.d.) at the time of injection and the results were compared with those obtained in the juvenile and adult animals, as reported in the preceding paper. In the thalamus of newborn animals, neurons belonging to nuclei located away from the midline send strictly ipsilateral cortical projections. However, in the midline nuclei of the intralaminar thalamic complex, a small region of overlap was observed between neurons projecting ipsilaterally and neurons projecting contralaterally in animals aged less than 9 postnatal days. In addition, in these neonatal animals a small number of bilaterally projecting neurons was detected in this region of overlap. In all other subcortical structures examined (ventral tegmental area, diagonal band of Broca, claustrum), the laterality of the projection was the same in the newborn and the adult animals. In particular, in the claustrum of neonatal animals, as in adult animals, there was a large contingent of contralaterally projecting neurons and only a very small number of bilaterally projecting neurons. The results in the cortex contrast with those observed in subcortical structures. Whereas ipsilaterally projecting neurons were distributed in a broadly similar way in newborn and adult animals, the laminar and areal distribution of contralaterally projecting neurons in newborn animals clearly differed from those observed in the adult animals. Furthermore, double labelled neurons were more numerous in animals aged less than 12 days than in adults. The proportions of such bilaterally projecting neurons were computed with respect to the numbers of neurons sending ipsilateral projections to area 17. These proportions are constant at all ages in the claustrum and cortical area 8. In areas 18a, 29 and 35 on the other hand, the proportions of bilaterally projecting neurons increase after 5 days and reach a peak in the period extending from 9 to 11 days of age when more than half of the neurons projecting ipsilaterally also send an axonal branch to the contralateral cortex. In cortical areas 29 and 35, this peak is followed by a sudden drop to the adult level at 12 postnatal days, whereas the return to the adult level is gradual in area 18a. These results demonstrate that, in subcortical structures and in cortical area 8, the laterality of the afferent connections to the visual cortex does not change during postnatal development. By contrast, cortical areas 18a, 29 and 35 go through a stage when numerous cells send bifurcating connections to both hemispheres. The timing of the decrease in proportions of bilaterally projecting neurons in these areas suggests that numerous neurons retract their callosal axonal branch when the adult pattern of callosal connectivity is established at 9–11 days of age.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 0029-554X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 0029-554X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Fluorine Chemistry 29 (1985), S. 118 
    ISSN: 0022-1139
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 0370-2693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...