Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 3600-3609 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A theoretical framework is developed for calculating the nonlinear rf forces that can drive sheared poloidal flow in a tokamak plasma. It is shown that the rf-induced flow drive can be calculated without first obtaining an explicit result for the nonlinear distribution function. Instead, for modes satisfying the eikonal approximation, the flow drive can be expressed entirely in terms of moments of the linearized plasma responses. The method is applied to obtain explicit results for poloidal force generation for sheared flow drive applications in a hot plasma slab that supports rf waves of arbitrary polarization. The theory is fully electromagnetic and retains k⊥ρi∼1 (Bessel function) effects for the ion dynamics without approximation. An illustrative application to the ion Bernstein wave is presented. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1951-1958 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Recent results are presented for turbulence in tokamak boundary plasmas and its relationship to the low-to-high confinement (L–H) transition in a realistic divertor geometry. These results are obtained from a three-dimensional (3D) nonlocal electromagnetic turbulence code, which models the boundary plasma using fluid equations for plasma vorticity, density, electron and ion temperatures and parallel momenta. With sources added in the core-edge region and sinks in the scrape-off layer (SOL), the code follows the self-consistent profile evolution together with turbulence. Under DIII-D [Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), p. 159] tokamak L-mode conditions, the dominant source of turbulence is pressure-gradient-driven resistive X-point modes. These modes are electromagnetic and curvature-driven at the outside mid-plane region but become electrostatic near X-points due to magnetic shear and collisionality. Classical resistive ballooning modes at high toroidal mode number, n, coexist with these modes but are sub-dominant. Results indicate that, as the power is increased, these modes are stabilized by increased turbulence-generated velocity shear, resulting in an abrupt suppression of high-n turbulence and the formation of a pedestal in density and temperature, as is characteristic of the H-mode transition. The sensitivity of the boundary turbulence to the direction of the toroidal field Bt is discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3429-3439 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A novel mechanism for feedback stabilization of external kink modes and disruptions is proposed in which modulated radio-frequency (RF) antennas apply a stabilizing ponderomotive force (PF) to the plasma. The RF power required for n=1 kink stabilization in the Princeton Beta Experiment-Modified (PBX-M) [Phys. Fluids B 2, 1271 (1990)] is estimated, and it is shown that the idea can be tested with the existing antenna system. A simulation of a preliminary n=0 modulation experiment on PBX-M also shows that the PF can balance applied vertical field oscillations. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 2890-2900 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Experimental evidence suggests that unabsorbed wave energy in ion cyclotron range of frequency fast wave (FW) experiments can result in deleterious edge interactions. A model describing the formation of far field sheaths due to FW interaction with material surfaces is presented. Near conductors that do not conform to flux surfaces, an incoming FW causes the generation of a slow wave (SW) component. The E(parallel) of the SW drives an RF sheath, in a manner similar to what has been previously discussed for antenna (near field) sheaths. To assess the importance of the proposed mechanism, a heuristic scaling model of the resultant sheath voltage V is developed and compared with a numerical code. The model illustrates the important dependencies of V on the single pass absorption, edge density, FW frequency, FW cutoff location, and limiter/wall geometries and yields qualitative agreement with the experimental observations.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 222-233 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Recent measurements show that nondiffusive, intermittent transport of particles can play a major role in the scrape-off-layer (SOL) of fusion experiments. A possible mechanism for fast convective plasma transport is related to the plasma filaments or "blobs" observed in the SOL with fast cameras and probes. In this paper, physical arguments suggesting the importance of blob transport [S. I. Krasheninnikov, Phys. Lett. A 283, 368 (2001)] have been extended by calculations using a three-field fluid model, treating the blobs as coherent propagating structures. The properties of density, temperature and vorticity blobs, and methods of averaging over ensembles of blobs to get the average SOL profiles, are illustrated. The role of ionization of background neutrals in sustaining the density blob transport is also discussed. Many qualitative features of the experiments, such as relatively flat density profiles and transport coefficients increasing toward the wall, are shown to emerge naturally from the blob transport paradigm. © 2002 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 4622-4631 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The linear behavior of resistive ballooning modes in the edge and scrape-off layer of diverted tokamaks is explored in the context of a collisional fluid model. It is shown that the large magnetic shear and small poloidal field in the X-point region act to increase the wave number, and hence the importance of resistivity, near the X point. The resulting "disconnection" of the eigenmodes across the X point profoundly influences the unstable spectrum. A new class of modes called resistive X-point (RX) modes exploits this synergism between resistivity and the X-point geometry, giving rise to robust growth rates at moderate-to-low mode numbers. Relative to an equivalent limited plasma, the diverted plasma is shown to be more unstable in the edge (inside the separatrix), and more stable in the scrape-off layer. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 519-529 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The influence of ion–neutral interactions (charge exchange, elastic scattering) on scrape-off-layer (SOL) stability is studied in the eikonal limit for a single-null X-point geometry typical of tokamak divertors. Instability drives due to curvature and to the ion–neutral drag effect are included in the model. The ion–neutral interaction terms are highly localized near the divertor plates; these terms are stabilizing for typical parameters and large enough to affect the SOL ballooning-interchange stability in the absence of resistivity. It is shown that the growth rate of ideal curvature-driven modes is significantly reduced by the ion–neutral interaction terms; the growth rate of resistive ballooning modes is not affected much by the neutrals, because resistivity allows the mode to disconnect from the divertor region. In both cases, the X-point geometry significantly affects the stability. An ion–neutral drag instability localized near the plates is only found in a small region of parameter space. Conditions for the existence of this instability in X-point geometry are discussed. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 3187-3193 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: In the limit where a strong parallel electric field has short parallel scale lengths, the parallel electron motion becomes nonadiabatic and highly nonlinear, and the usual ponderomotive treatment of the slow time scale behavior of electrons is invalid. Here, a new nonadiabatic model for describing the resulting heating and expulsion of electrons from regions of a strong electric field is developed. The model shows that a typical electron is heated to a value characterized by the "quiver" velocity in the applied field. A nonlinear density expulsion still occurs in this nonadiabatic strong rf field limit, but exhibits an algebraic dependence on the wave amplitude in contrast to the exponential dependence that occurs in conventional ponderomotive theory. Results are applied to electrons in the edge plasma, near a high-power Ion Bernstein Wave heating antenna. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 1330-1341 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The stability of the scrape-off layer to high toroidal mode number ballooning-type instabilities is considered. The equilibrium includes a simple model of the X-point geometry, and parallel (as well as cross-field) equilibrium variations of temperature, density, and potential. The latter are computed numerically from the Braginskii form for Ohm's law. The stability analysis includes the effects of curvature, resistivity, parallel variation of the E×B drift frequency, and sheath boundary conditions at the divertor plate. Importantly, the equilibrium model assures consistency among the possible instability drives; i.e., the pressure weighting of the curvature, the plasma potential (E×B drift), and the conditions at the divertor plate are coupled by the equilibrium model. Numerical solutions indicate two modes: (i) the curvature-driven mode with growth rate enhanced by the sheaths; and (ii) the E×B shear mode driven by equilibrium variations in the region between the X point and the plate. The latter mode is shown to be partly driven by the X-point geometry. The effect of finite Larmor radius, resistivity, and electron inertia on these modes is investigated. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 699-701 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Convective cells (CC's) are important in understanding density profile modifications induced by ion cyclotron range of frequencies (ICRF) antennas. This has motivated the present work in which the effect of CC's on transport in the scrape-off layer is studied, in the regime where the density gradient scale length Ln and the cell size L are comparable. Monte Carlo simulations show that closed cell convection acts to flatten the density profile, and that open cells enhance the particle flow to the wall, depleting the density and yielding profiles similar to those measured near ICRF antennas. A new one-dimensional, two-branch model of CC transport is shown to agree well with the simulations. The model gives rise to two characteristic scale lengths, only one of which is retained in the enhanced diffusion models that are applicable for Ln(very-much-greater-than)L. The two-branch model is expected to be useful in analyzing ICRF experiments. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...