Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 38 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous experiments have shown that severe hypoglycemia disrupts cerebral energy state in spite of a maintained cerebral oxygen consumption, suggesting uncoupling of oxidative phosphorylation. Other studies have demonstrated that hypoglycemia leads to loss of cerebral cortical phospholipids and phospholipid-bound fatty acids. The objective of the present study was, therefore, to study respiratory characteristics of brain mitochondria during severe hypoglycemia and to correlate respiratory activity to mitochondrial phospholipid composition. Mitochondria were isolated after 30 or 60 min of hypoglycemia with ceased EEG activity, and after a 90-min recovery period, and their resting (state 4) and ADP-stimulated (state 3) oxygen consumption rates and phospholipids and phospholipid-bound fatty acid content were measured. After 30 min of hypoglycemia, state 3 respiration decreased without any increase in state 4 respiration or change in ADP/O ratio. This decrease, which occurred with glutamate plus malate—but not with succinate—as substrates, was partly reversed by addition of bovine serum albumin and KCI. Chemical analyses of isolated mitochondria did not reveal changes in their phospholipid or fatty acid content. The results thus failed to account for the dissociation of cerebral energy state and oxygen consumption. It is emphasized, though, that uncoupling may well occur in vivo due to accumulation of free fatty acids and “futile cycling” of K+ and Ca2+. After 60 min of hypoglycemia, a moderate decrease in state 3 respiration was observed also with succinate as substrate, and there was some decrease in ADP/O ratios in KCI-containing media. However, the changes in ADP/O ratios were more conspicuous during recovery; in addition, state 4 respiration increased significantly. It is concluded that changes in mitochondrial function after 30 min of hypoglycemia are potentially reversible but that true mitochondrial failure develops in the recovery period following 60 min of hypoglycemia. This conclusion was corroborated by results demonstrating incomplete recovery of cerebral energy state. Since EEG and sensory evoked potentials return after 30 min but not after 60 min of hypoglycemia it seemed difficult to explain failure of return of electrophysiological function after 60 min of hypoglycemia solely by mitochondrial dysfunction; plasma membrane function was therefore assessed by measurements of extracellular potassium activity ([K+]e). The results showed that whereas [K+]e remained close to control in the recovery period following 30 min of hypoglycemia it rose progressively during recovery following 60 min of hypoglycemia. Possibly, inhibition of Na+ K+–activated ATPase could contribute to the permanent loss of spontaneous or evoked electrical activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 38 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: To explore the possibility that peroxtdative degradation of brain tissue lipid constituents is an important mechanism of irreversible ischemic damage, we measured cortical fatty acids and phospholipids during reversible brain ischemia in the rat. Neither complete nor severe incomplete ischemia (5 and 30 min) caused any measurable breakdown of total or individual fatty acids or phospholipids. Except for a small (and reversible) decrease of inositol plus serine phosphoglycerides in the early postischemic period following 30 min of incomplete ischemia, there were no significant losses of fatty acids or phospholipids during recirculation. Since peroxidation, induced in brain cortical tissue in vitro, characteristically involves degradation of polyenoic fatty acids (arachidonic and docosahexaenoic acids) and of ethanolamine phosphoglycerides, the present in vivo results fail to support the hypothesis that peroxidation of membrane lipids is of primary importance for ischemic brain cell damage. Both complete and severe incomplete ischemia caused a similar increase in the tissue content of free fatty acids (FFA). Thus the FFA pool increased by about 10 times during a 30-min ischemic period, to constitute 1 - 2% of the total fatty acid pool. Since there was a relatively larger increase in polyenoic FFA (especially in arachidonic acid) than in saturated FFA, the release of FFA may be the result of activation of a phospholipase A2 unbalanced by reesterification. Increased levels of FFA persisted during the initial recirculation period, but a gradual normalization occurred and the ischemic changes were essentially reversed at 30 min after restoration of circulation. The pathophysiological implications of the changes in FFA are discussed with respect to mitochondrial dysfunction, formation of cellular edema and prostaglandin-mediated deterioration of postischemic circulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Restitution of cerebral cortex concentrations of organic phosphates, glycolytic metabolites, citric acid cycle intermediates, associated amino acids, and ammonia, following a 30 min period of complete ischemia, was studied in rats anaesthetized with either 70% N2O or 150 mg·kg-1 of phenobar-bital.Following a 90 min period of recirculation the pattern of restitution was similar in the two groups. Thus, all animals showed recovery of phosphocreatine concentrations, restitution of the adenylate energy charge to about 99% of control, and disappearance of lactate accumulated during the ischemia. Analyses of glycolytic metabolites indicated inhibition of glycolysis at the phosphofructokinase step, possibly caused by accumulation of citrate. Measured citric acid cycle intermediates indicated extensive normalization of mitochondrial metabolism. Changes in amino acid concentrations consisted of a fall in glutamate concentration, a rise in aspartate/glutamate ratio, a fall in GABA concentration, and a rise in alanine concentration. However, ammonia concentration was close to normal, and the size of the amino acid pool did not change.It is concluded that although the results do not exclude damage to a small part of the neuronal population, they demonstrate that, irrespective of the type of anaesthesia used, the majority of brain cells must have survived 30 min of complete ischemia without signs of irreversible metabolic damage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 27 (1976), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 23 (1974), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: —The influence of insulin-induced hypoglycemia upon carbohydrate substrates, amino acids and ammonia in the brain was studied in lightly anaesthetized rats, and the changes observed were related to the blood glucose concentration and to the EEG. Calculations from glucose concentrations in tissue, CSF and blood indicated the presence of appreciable amounts of free intracellular glucose at blood glucose concentrations above 3 μmol/g. When the blood glucose concentration fell below 3 μmol/g, there was no calculated intracellular glucose and decreases in the concentrations of glycogen, G-6-P, pyruvate, lactate and of citric acid cycle intermediates were observed. At blood glucose levels of below 1 μmol/g the tissue was virtually depleted of glycogen, G-6-P, pyruvate and lactate.When the blood glucose concentration was reduced below about 2·5 μmol/g there were progressive increases in aspartate and progressive decreases in alanine, GABA, glutamine and glutamate, and at blood glucose concentrations below 2 μmol/g the ammonia concentration increased. It is suggested that most of the changes observed can be explained as a result of a decreased availability of pyruvate and of NADH. The decrease in the concentration of free NADH was reflected in reductions of the lactate/pyruvate and malate/oxaloacetate ratios at an unchanged intracellular pH.Slow wave activity appeared in the EEG when the hypoglycemia gave rise to reduction of the intracellular glucose concentration to zero. Convulsive activity continued until carbohydrate stores in the form of glycogen and G-6-P were depleted. When this occurred the EEG became isoelectric. In all convulsive animals the concentration of the nervous system activity inhibitor, GABA, was decreased and stimulant, aspartate, was increased.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 23 (1974), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: —Concentrations of phosphocreatine, creatine, ATP, ADP and AMP were measured in the cerebral cortex of rats during insulin-induced hypoglycemia. Blood glucose concentrations were related to clinical symptoms in unanaesthetized animals and to the EEG pattern in paralysed and lightly anaesthetized animals. There was an excellent correlation between blood glucose concentration and EEG pattern. In animals showing a pronounced slowing of the EEG or convulsive polyspike activity for up to 20 min, there were no changes in any of the phosphates. However, after prolonged convulsive activity some animals showed clear signs of energy failure, and in all animals with an isoelectric EEG there was a major derangement of the energy state. Since the majority of those animals did not show signs of cerebral hypoxia or ischemia it is concluded that hypoglycemic coma is accompanied by substrate deficiency of a degree sufficient to induce energy depletion of brain tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The influence of hyperthermia on cerebral blood flow, cerebral metabolic rate for oxygen and cerebral metabolite levels was studied by increasing body temperature from 37° to 40°C and 42°C in rats under nitrous oxide anaesthesia maintained at constant arterial CO2 tension. The metabolic rate for oxygen increased by 5-6% per degree centigrade. At 42°C the increase in cerebral blood Row was comparable to that in the metabolic rate. The increased temperatures were not accompanied by changes in organic phosphates (phosphocreatine, ATP, ADP or AMP) or in lactate/pyruvate ratio. There was an increase in the tissue to blood glucose concentration ratio. At steady state, there was an increase in glucose-6-phosphate but no other changes in glycolytic metabolites or citric acid cycle intermediates, and the only change in amino acids studied (glutamate, glutamine, aspartate, alanine and GABA) was an increase in glutamate concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 21 (1973), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Autolytic changes in the mouse brain, occurring during immersion of the animal in liquid nitrogen, were evaluated by measuring the tissue concentrations of glucose, lactate, pyruvate, α-oxoglutarate, phosphocreatine, creatine, ATP, ADP and AMP. The values thus obtained were compared with those obtained in paralysed mice under nitrous oxide anaesthesia, the brains of which were frozen in such a way that arterial blood pressure and oxygénation were upheld during the freezing. Immersion of unanaesthetized mice in liquid nitrogen gave rise to significant alterations in phosphocreatine, creatine, lactate, lactate/pyruvate ratio, ADP and AMP. A comparison with values obtained in paralysed and anaesthetized mice that were frozen by immersion in liquid nitrogen showed that the metabolic changes observed in the unanaesthetized animals could not be caused by an anaesthetic effect on the metabolic pattern. It is concluded that autolysis in the mouse brain occurs during immersion of the animal in a coolant, mainly because arterial hypoxia develops before the tissue is frozen. A comparison with previous results on rat cerebral cortex indicates that mice offer no advantage for studies of cerebral metabolites in unanaesthetized animals. In both species, accurate analyses of labile cerebral metabolites require that the brain is frozen in a way that prevents arterial hypoxia during the fixation of the tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 21 (1973), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Optimal freezing conditions for metabolites were evaluated in 250-450 g rats. As a standard procedure, the brains were frozen in such a way that the blood pressure and arterial oxygenation were upheld during the freezing. The progression of the freezing front was determined by means of implanted thermocouples, and the interruption of the circulation by means of injections of carbon particles into the blood stream. The freezing gave rise to a rapid interruption of the circulation in the superficial cortical layer first reached by the freezing front well before the temperature reached 0°C. In deeper regions the progression of the freezing front was slower and interruption of the circulation occurred simultaneously with the freezing of the tissue. Measurements of labile cerebral metabolites, including phosphocreatine, ATP, ADP, AMP and lactate, failed to show signs of autolysis in the part of cortex which became unperfused at temperatures above zero. Since the energy state was identical in superficial cortical areas and in areas that did not freeze until after 40–90 s, it is concluded that the freezing technique gives optimal conditions for metabolites also in deep cerebral structures.Decapitation of unanaesthetized animals gave rise to large autolytic changes in the cerebral cortex. In unanaesthetized animals that were immersed in liquid nitrogen the changes were less marked and mainly affected the concentrations of phosphocreatine, ADP and lactate. When paralysed animals that were anaesthetized with N2O were immersed in liquid nitrogen the only significant change from the control was a decrease in phosphocreatine content. The virtual absence of autolytic changes in this group of animals was not related to the anaesthesia since more pronounced changes were observed in phenobarbitone-anaesthetized rats immersed in the coolant. These differences could be explained by the fact that spontaneously breathing animals immersed in liquid nitrogen developed arterial hypoxia much faster than paralysed animals. It is concluded that an optimal metabolite pattern can only be obtained in anaesthetized animals, frozen with a method that was described by Kerr almost 40 years ago (Kerr, 1935). If unanaesthetized animals must be used, greater attention should be paid to the oxygenation of the blood during the freezing than to such factors as speed of freezing or depth of anaesthesia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 21 (1973), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— In order to evaluate the influence of hypocapnia upon the energy metabolism of the brain, lightly anaesthetized rats were hyperventilated to arterial CO2 tensions of 26, 15 and 10 mm Hg respectively, with subsequent measurements of intracellular pH and of tissue concentrations of carbohydrate substrates, amino acids and organic phosphates. At Pco1= 26 there was a moderate increase in the intracellular pH but when the Pco2 was reduced further to 10 mm Hg the intracellular pH returned to normal, or slightly subnormal, values. The reduction in PCo2 was accompanied by increased cerebral cortical concentrations of lactate, pyruvate, citrate, α-ketoglutarate, malate and glutamate and by decreased aspartate concentrations. It is concluded that the accumulation of metabolic acids explains the normal value for intracellular pH at very low CO2 tensions. Previous results obtained in man indicate that there is an increased anaerobic production of lactic acid in the brain in extreme hypocapnia. At comparable CO2 tensions the present results showed a small fall in phosphocreatine and a small rise in ADP. However, since the ammonia concentrations were normal or decreased and since there was an increase in citrate, the results give no direct support to the hypothesis of an activation of phosphofructokinase. Since the cerebral venous Po2 was reduced to 20 mm Hg at an arterial CO2 tension of 10 mm Hg the accumulation of acids was probably secondary to tissue hypoxia. However, since there was no, or only a very small, increase in the calculated cytoplasmic NADH/NAD+ ratio, it appears less likely that acids accumulated due to lack of NAD+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...