Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    ISSN: 1089-7623
    Quelle: AIP Digital Archive
    Thema: Physik , Elektrotechnik, Elektronik, Nachrichtentechnik
    Notizen: The transport of runaway electrons in a hot plasma can be comparatively easily measured by perturbation experiments. The runaway electron diffusion coefficient is determined by intrinsic magnetic fluctuations rather than electrostatic fluctuations because of the high energies involved. The results presented here demonstrate the efficacy of using runaway transport techniques for determining intrinsic magnetic fluctuations. This work was supported in part by U. S. Department of Energy under grant DE-FG05-88ER-53267 and the Texas Advanced Research Program.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 3600-3609 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A theoretical framework is developed for calculating the nonlinear rf forces that can drive sheared poloidal flow in a tokamak plasma. It is shown that the rf-induced flow drive can be calculated without first obtaining an explicit result for the nonlinear distribution function. Instead, for modes satisfying the eikonal approximation, the flow drive can be expressed entirely in terms of moments of the linearized plasma responses. The method is applied to obtain explicit results for poloidal force generation for sheared flow drive applications in a hot plasma slab that supports rf waves of arbitrary polarization. The theory is fully electromagnetic and retains k⊥ρi∼1 (Bessel function) effects for the ion dynamics without approximation. An illustrative application to the ion Bernstein wave is presented. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 4622-4631 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The linear behavior of resistive ballooning modes in the edge and scrape-off layer of diverted tokamaks is explored in the context of a collisional fluid model. It is shown that the large magnetic shear and small poloidal field in the X-point region act to increase the wave number, and hence the importance of resistivity, near the X point. The resulting "disconnection" of the eigenmodes across the X point profoundly influences the unstable spectrum. A new class of modes called resistive X-point (RX) modes exploits this synergism between resistivity and the X-point geometry, giving rise to robust growth rates at moderate-to-low mode numbers. Relative to an equivalent limited plasma, the diverted plasma is shown to be more unstable in the edge (inside the separatrix), and more stable in the scrape-off layer. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 283-294 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: In recent ion Bernstein wave (IBW) heating experiments on the Tokamak Fusion Test Reactor (TFTR) [J. R. Wilson. R. E. Bell, S. Bernabei, K. Hill et al., Phys. Plasmas 5, 1721 (1998)] a velocity shear layer in the plasma core was obtained. The magnitude of velocity shear was believed to be too small to create an internal transport barrier, because of parasitic edge processes which reduced the power coupled to the core. In this paper we investigate these rf (radio frequency) edge processes by employing a model which includes both coaxial modes and their dissipation in rf plasma sheaths. The coaxial mode (here, an electron plasma wave trapped in the halo plasma between the lower hybrid layer and the vessel wall) can propagate at low poloidal wave numbers. This feature is shown to relate to the observed poloidal phasing dependence of the antenna loading. Results of analytical models and a three-dimensional antenna code are presented. The experimentally observed loading is also nonlinear, being larger at very low powers. This feature is explored using an rf sheath dissipation model. Loading into the coaxial mode is expected to maximize when the density gradient at the lower hybrid layer is steep, preventing efficient mode transformation to the IBW. The role of ponderomotive force in modifying the density profile is also discussed. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 519-529 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The influence of ion–neutral interactions (charge exchange, elastic scattering) on scrape-off-layer (SOL) stability is studied in the eikonal limit for a single-null X-point geometry typical of tokamak divertors. Instability drives due to curvature and to the ion–neutral drag effect are included in the model. The ion–neutral interaction terms are highly localized near the divertor plates; these terms are stabilizing for typical parameters and large enough to affect the SOL ballooning-interchange stability in the absence of resistivity. It is shown that the growth rate of ideal curvature-driven modes is significantly reduced by the ion–neutral interaction terms; the growth rate of resistive ballooning modes is not affected much by the neutrals, because resistivity allows the mode to disconnect from the divertor region. In both cases, the X-point geometry significantly affects the stability. An ion–neutral drag instability localized near the plates is only found in a small region of parameter space. Conditions for the existence of this instability in X-point geometry are discussed. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3429-3439 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A novel mechanism for feedback stabilization of external kink modes and disruptions is proposed in which modulated radio-frequency (RF) antennas apply a stabilizing ponderomotive force (PF) to the plasma. The RF power required for n=1 kink stabilization in the Princeton Beta Experiment-Modified (PBX-M) [Phys. Fluids B 2, 1271 (1990)] is estimated, and it is shown that the idea can be tested with the existing antenna system. A simulation of a preliminary n=0 modulation experiment on PBX-M also shows that the PF can balance applied vertical field oscillations. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 2890-2900 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Experimental evidence suggests that unabsorbed wave energy in ion cyclotron range of frequency fast wave (FW) experiments can result in deleterious edge interactions. A model describing the formation of far field sheaths due to FW interaction with material surfaces is presented. Near conductors that do not conform to flux surfaces, an incoming FW causes the generation of a slow wave (SW) component. The E(parallel) of the SW drives an RF sheath, in a manner similar to what has been previously discussed for antenna (near field) sheaths. To assess the importance of the proposed mechanism, a heuristic scaling model of the resultant sheath voltage V is developed and compared with a numerical code. The model illustrates the important dependencies of V on the single pass absorption, edge density, FW frequency, FW cutoff location, and limiter/wall geometries and yields qualitative agreement with the experimental observations.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1417-1420 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: To conserve transformer volt-seconds, power to toroidal magnetic field coils, and to trigger an early transition into high confinement (H) mode, where the requirements on auxiliary power are lower, rf heating during the B-field ramp phase of ignition-class tokamaks is considered. The scheme is analyzed by modifying the usual plasma operating condition diagrams to apply to the ramp phase where the magnetic field, plasma current, and density are changing. It is shown that ion cyclotron range-of-frequencies direct electron heating during the ramp phase of IGNITOR [B. Coppi, M. Nassi, and L. E. Sugiyama, Phys. Scr. 45, 112 (1992)], as proposed by Majeski [R. Majeski, in AIP Conference Proceedings 485—Radio Frequency Power in Plasmas, Annapolis, MD (AIP, New York, 1999), p. 353], may be useful in optimizing the operating condition path to ignition. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1951-1958 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Recent results are presented for turbulence in tokamak boundary plasmas and its relationship to the low-to-high confinement (L–H) transition in a realistic divertor geometry. These results are obtained from a three-dimensional (3D) nonlocal electromagnetic turbulence code, which models the boundary plasma using fluid equations for plasma vorticity, density, electron and ion temperatures and parallel momenta. With sources added in the core-edge region and sinks in the scrape-off layer (SOL), the code follows the self-consistent profile evolution together with turbulence. Under DIII-D [Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), p. 159] tokamak L-mode conditions, the dominant source of turbulence is pressure-gradient-driven resistive X-point modes. These modes are electromagnetic and curvature-driven at the outside mid-plane region but become electrostatic near X-points due to magnetic shear and collisionality. Classical resistive ballooning modes at high toroidal mode number, n, coexist with these modes but are sub-dominant. Results indicate that, as the power is increased, these modes are stabilized by increased turbulence-generated velocity shear, resulting in an abrupt suppression of high-n turbulence and the formation of a pedestal in density and temperature, as is characteristic of the H-mode transition. The sensitivity of the boundary turbulence to the direction of the toroidal field Bt is discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 659-664 
    ISSN: 1089-7674
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The behavior of Alfvén waves and the corresponding variation of the wave-induced transport coefficients along a field line including the divertor X-point region are examined. It is shown that several competing effects exist and can be quantified using a quasilinear diffusion model that takes the magnetic geometry of the X point into account. To address the issue of mode behavior and the validity of the eikonal approximation near the X point, an exact analytical solution of an equation describing Alfvén waves in the X-point region is obtained. The results suggest that the X-point region can only dominate Alfvén wave-induced transport on flux surfaces that are very close to the separatrix. © 1998 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...