Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 522 (1988), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Key wordsα1-Adrenoceptor ; Decynium22 ; Disprocynium24 ; Extraneuronal monoamine transporter ; Pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 1,1′-Diethyl-2,2′-cyanine (decynium22) and 1,1′-diisopropyl-2,4′-cyanine (disprocynium24) are highly potent inhibitors of the extraneuronal monoamine transporter. When given as i.v. bolus injections (4 μmol kg–1) to anaesthetized rabbits, both drugs elicited a transient fall in blood pressure without altering heart rate. The observed maximum fall in diastolic blood pressure was 59% after decynium22 and 43% after disprocynium24 administration. The pharmacokinetics of decynium22 and disprocynium24 were similar; they were characterized by short half-lives for elimination (8.2 and 4.5 min, respectively) and very high plasma clearances (173 and 180 ml kg–1 min–1, respectively). The mechanism underlying the blood pressure-lowering effect of decynium22 was explored in the isolated incubated rabbit aorta. Decynium22 antagonized the noradrenaline-induced contraction; the pA2 for this interaction was 7.6, and the slope of the corresponding Schild plot was unity. In a membrane preparation from rat myocardium, decynium22 as well as disprocynium24 inhibited the specific binding of [125I]-2-[β-(4-hydroxy-3-iodophenyl)-ethylaminomethyl]-tetralone (125I-HEAT), a selective ligand to α1-adrenoceptors. The Ki‘s were 5.3 and 240 nmol l–1 for decynium22 and disprocynium24, respectively. The type of binding inhibition by decynium22 was competitive. It is concluded that the two inhibitors of extraneuronal monoamine transport decynium22 and disprocynium24 lower blood pressure by blocking α1-adrenoceptors. A comparison of their potencies in blocking extraneuronal monoamine transport and α1-adrenoceptors clearly indicates that disprocynium24 is more suitable for studies designed to determine the role of extraneuronal monoamine transport in vivo. Considering its very fast elimination kinetics, disprocynium24 must be administered by constant rate-infusions in order to avoid large fluctuations of plasma levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: α1-Adrenoceptor ; Decynium22 ; Disprocynium24 ; Extraneuronal monoamine transporter ; Pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 1,1′-Diethyl-2,2′-cyanine (decynium22) and 1,1′-diisopropyl-2,4′-cyanine (disprocynium24) are highly potent inhibitors of the extraneuronal monoamine transporter. When given as i.v. bolus injections (4 μmol kg−1) to anaesthetized rabbits, both drugs elicited a transient fall in blood pressure without altering heart rate. The observed maximum fall in diastolic blood pressure was 59% after decynium22 and 43% after disprocynium24 administration. The pharmacokinetics of decynium22 and disprocynium24 were similar; they were characterized by short half-lives for elimination (8.2 and 4.5 min, respectively) and very high plasma clearances (173 and 180 ml kg−1 min−1, respectively). The mechanism underlying the blood pressure-lowering effect of decynium22 was explored in the isolated incubated rabbit aorta. Decynium22 antagonized the noradrenaline-induced contraction; the pA2 for this interaction was 7.6, and the slope of the corresponding Schild plot was unity. In a membrane preparation from rat myocardium, decynium22 as well as disprocynium24 inhibited the specific binding of [125I]-2-[β-(4-hydroxy-3-iodophenyl)-ethy-laminomethyl]-tetralone (125I-HEAT), a selective ligand to α1-adrenoceptors. The Ki's were 5.3 and 240 nmol l−1 for decynium22 and disprocynium24, respectively. The type of binding inhibition by decynium22 was competitive. It is concluded that the two inhibitors of extraneuronal monoamine transport decynium22 and disprocynium24 lower blood pressure by blocking α1-adrenoceptors. A comparison of their potencies in blocking extraneuronal monoamine transport and α1-adrenoceptors clearly indicates that disprocynium24 is more suitable for studies designed to determine the role of extraneuronal monoamine transport in vivo. Considering its very fast elimination kinetics, disprocynium24 must be administered by constant rate-infusions in order to avoid large fluctuations of plasma levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1912
    Keywords: Key words Disprocynium24 ; Noradrenaline ; Adrenaline ; Dopamine ; Renal excretion ; Organic cation transport ; Inulin clearance ; Uptake2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 1,1′-Diisopropyl-2,4′-cyanine (disprocynium24), a potent inhibitor of the extraneuronal monoamine transport system (uptake2), was previously shown to reduce the clearance of catecholamines from plasma not only by blocking uptake2 but presumably also by blocking organic cation transport. To provide more direct evidence for the latter conclusion, the present study was carried out in anaesthetized rabbits. It aimed at determining the effect of disprocynium24 on the renal excretion of catecholamines which is known to be, at least in part, a consequence of organic cation transport in the kidney. To this end, the plasma clearance due to renal excretion (Clu) of endogenous as well as infused 3H-labelled adrenaline, noradrenaline and dopamine was determined for 60-min periods of urine collection in rabbits treated either with disprocynium24 (270 nmol kg-1 i.v followed by i.v. infusion of 80 nmol kg-1 min-1) or vehicle. Two groups of animals were studied: group I (monoamine oxidase and catechol-O-methyltransferase intact) and group II (monoamine oxidase and catechol-O-methyltransferase inhibited). A third group of animals with intact monoamine oxidase and catechol-O-methyltransferase was used to study the effect of disprocynium24 on the glomerular filtration rate (as determined by measuring the plasma clearance of inulin). In vehicle controls, Clu of endogenous adrenaline, noradrenaline and dopamine was 7.2, 5.2 and 153.6 ml kg-1 min-1, respectively, in group I and 10.4, 7.0 and 134.3 ml kg-1 min-1, respectively, in group II. Similar control values of Clu were obtained for infused 3H-adrenaline and 3H-noradrenaline, but not for infused 3H-dopamine; Clu of 3H-dopamine (4.9 ml kg-1 min-1 in group I and 15.4 ml kg-1 min-1 in group II) was considerably smaller than Clu of endogenous dopamine, indicating that most of the dopamine in urine (i.e., 98% in group I and 92% in group II) was derived from the kidneys rather than from the circulation. By contrast, only about one quarter of the noradrenaline in urine (32% in group I and 24% in group II) and none of the urinary adrenaline were of renal origin. In both groups, disprocynium24 markedly reduced the Clu of endogenous catecholamines (by 72-90%) and of infused 3H-catecholamines (by 49-69%). Moreover, it preferentially inhibited the renal excretion of those components of urinary dopamine and noradrenaline which were derived from the kidney. Therefore, disprocynium24 inhibits the tubular secretion of catecholamines and, hence, organic cation transport in the kidney. This conclusion was substantiated by the observation that disprocynium24 did not alter the glomerular filtration rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 275 (1972), S. 45-68 
    ISSN: 1432-1912
    Keywords: Stereoselectivity of Uptake ; Noradrenaline ; Neuronal Uptake ; Neuronal Deamination ; Nictitating Membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Pairs of smooth muscles isolated from the nictitating membrane of the cat were incubated with 1.2 ml of Krebs' solution containing 10 ng/ml of 3H-(±)-noradrenaline for 7.5 min (in the presence of U-0521 to inhibit COMT). Removal of the amine from the bath as well as the appearance of deaminated 3H-catechols in the bath were measured. 2. Pretreatment with reserpine did not affect the rate of removal, while increasing the rate of deamination. The ability of the muscles to retain exogenous amine for one hour was reduced to 12% of normal. 3. A certain fraction of the total production of deaminated 3H-catechols escaped into the medium. For any given duration of incubation this fraction was independent of the concentration of noradrenaline in the medium. On repeated incubation the fraction remained constant. Therefore, reliable estimates of the rate of deamination were obtained with repeated incubations of the same muscle. 4. Sympathetic denervation and/or cocaine revealed that 60% of removal (of which 10% are due to dilution) and 25% of deamination are extraneuronal. 5. For incubations of 7.5 min measured rates of deamination represent initial rates, measured rates of removal do not. 6. Unlabelled (−)- and (+)-noradrenaline were equipotent (ID50=about 1 μM) in inhibiting the deamination of 10 ng/ml of 3H-(±)-noradrenaline. This inhibitory effect must be exerted on neuronal deamination, since extraneuronal deamination (in denervated muscles) was not affected by the addition of unlabelled isomers. 7. It is proposed that, under these experimental conditions, neuronal unptake is the rate limiting step for neuronal deamination, and that neuronal uptake in the cat's nictitating membrane lacks stereoselectivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1912
    Keywords: Neuronal uptake ; Initial rates of amine uptake ; Lag period for amine uptake ; Cocaine ; Rabbit heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Hearts were obtained from normal or reserpine-pretreated rabbits and perfused at a constant rate (3.6 ml·g−1·min−1) with Tyrode's solution containing 14C- or 3H-sorbitol and various concentrations of 3H-(−)noradrenaline (NA), 14C-(+)NA or 3H-(±)metaraminol; when NA was used, monoamine oxidase and catechol-O-methyl transferase were inhibited. During perfusion for 2 min the arterio-venous difference for 3H and 14C activity (and in this way the removal of amine and sorbitol from the perfusion fluid) was determined at intervals of 5 s. The uptake of amine into intracellular spaces of the heart was obtained by subtraction of the removal of sorbitol from that of amine; it was cumulatively added and plotted against time (uptake curve). Uptake was overwhelmingly neuronal. 2. The uptake curves were sigmoidal: after a brief initial lag period, uptake curves became linear; there-after, the slope of the curves decreased. The last phase of divergence from linearity occurred the earlier and was the more pronounced, the higher the amine concentration. It was interpreted to indicate that neuronal efflux of amine then began to reduce net uptake. 3. From the slope of the linear phase of the uptake curves initial rates of amine transport were obtained. They were saturable with increasing amine concentrations and obeyed Michaelis-Menten kinetics. The apparent K m values of the three amines were similar in magnitude and ranged from 2.9 to 5.9 μM. Uptake was stereoselective in that the V max of (+)NA was significantly lower than that of (−)NA. Pretreatment with reserpine affected neither the K m nor the V max for uptake. Cocaine was a potent competitive inhibitor of amine transport (K i=0.5–1.0 μM). 4. The intercept of the linear phase of the uptake curves on the time axis (t lag) (corrected for the time necessary for transit through the dead space) was taken as a measure of the lag period. It declined when uptake was progressively saturated (or inhibited) by increasing substrate (or cocaine) concentrations. Moreover, t lag was always linearly correlated with the fraction of amine removed from the perfusion fluid. These findings indicate that the equilibration of the uptake sites with the substrate concentration in the perfusion fluid is delayed by the uptake process itself, especially under low saturation conditions (i.e., when S〈K m).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 309 (1979), S. 89-97 
    ISSN: 1432-1912
    Keywords: Neuronal noradrenaline uptake ; Na+-dependent noradrenaline transport ; Effect of monovalent cations ; Rat vas deferens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Vasa deferentia obtained from reserpine-pretreated rats were incubated (after inhibition of both monoamine oxidase and catechol O-methyltransferase) in media containing 1.1 μmol·l−1 3H-(−)noradrenaline and various concentrations of Na+ (0–140 mmol·l−1; isosmolality maintained by sucrose or by several monovalent cations). Initial rates of neuronal uptake were determined in each single vas from the difference between “total” and “cocaine-resistant” uptake of 3H-noradrenaline. 2. The “cocaine-resistant” uptake (i.e., the distribution of 3H-noradrenaline observed in the presence of 100 μmol·l−1 cocaine) was considered to be nonneuronal. It was entirely independent of both the external Na+ concentration and the substance used to replace Na+ (or NaCl) in the medium. 3. The neuronal uptake of 3H-noradrenaline was virtually absent in Na+-free medium and was progressively stimulated by increasing Na+ concentrations. The stimulation of uptake by low Na+ concentrations was most pronounced when Tris+ was used to replace Na+; i.e., all other substitutes tested here (including sucrose, Li+, choline+ and K+) inhibited neuronal uptake when compared with Tris+. 4. While the Na+-dependent stimulation of neuronal uptake followed Michaelis-Menten kinetics in Tris+- or Li+-containing media, the kinetics of uptake stimulation by Na+ were rather complex in media containing choline+ or K+ as the substitute cation. 5. Li+ and K+ acted as competitive inhibitors with respect to Na+, whereas the inhibition of neuronal uptake by choline+ was the more pronounced, the higher the concentration of external Na+. 6. At concentrations higher than 25 mmol·l−1, the impairment of neuronal uptake by K+ exceeded that predictable from competitive inhibition of the action of Na+. This was due to the fact that high external K+ concentrations decelerated net uptake very early in the time course of amine accumulation, so that initial rates of uptake are likely to be underestimated under these conditions. 7. Thus, apart from maintaining isosmolality, several substances used to replace Na+ in the medium have inhibitory effects which must be considered in experiments designed to examine the role of Na+ in membrane transport of noradrenaline.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 324 (1983), S. 264-270 
    ISSN: 1432-1912
    Keywords: Veratridine ; Exocytotic release ; Neuronal efflux ; “Reserpine-like” effects ; Rat vas deferens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1) The veratridine-induced release of 3H-noradrenaline from noradrenergic neurones was examined in the isolated vas deferens of either untreated or reserpine plus pargyline-pretreated rats. The rat vas deferens, whose catechol O-methyltransferase was inhibited, was first incubated with 0.4 μmol/l 3H-(−)noradrenaline (30 min) and then washed repeatedly with amine-free solution. After 120 min (i.e., well after the efflux of tritium from the tissue had reached a steady level and was predominantly of neuronal origin), washout was continued in the presence of veratridine for further 10–15 min. 2) In vasa deferentia of untreated rats, variatridine (1–100 μmol/l) caused a concentration-dependent increase in the efflux of tritium. At high concentrations of the drug (30 or 100 μmol/l), this increase in efflux was peak-like during the first 3 min (“peak response”) and then fell to a plateau (“plateau response”). In the presence of veratridine, unchanged 3H-noradrenaline accounted for about 75% of the tritium efflux (the rest being represented by deaminated 3H-catechol metabolites). 3) The “peak response” to veratridine (100 μmol/l) was abolished by tetrodotoxin (TTX; 1 μmol/l) or the absence of external Ca2+. Cocaine (10 μmol/l) affected neither the “peak response” as such nor the contribution by 3H-noradrenaline to the efflux of tritium during that response. Hence, the “peak response” was due to exocytotic release of 3H-noradrenaline from the neurone. 4) The “plateau response” to veratridine (100 μmol/l) was unaffected by the absence of external Ca2+, largely resistant to TTX (1 μmol/l) and moderately reduced by cocaine. However, both TTX and cocaine drastically changed the composition of the radioactivity during the “plateau response”: they greatly reduced or even abolished the efflux of unchanged 3H-noradrenaline and markedly increased the efflux of deaminated 3H-metabolites. Hence, the “plateau response” represented a “reserpine-like” vesicular effect of varatridine; the ensuing 3H-noradrenaline efflux out of the neurone was mediated by the neuronal amine carrier. 5) After pretreatment with reserpine (to inhibit vesicular uptake) and pargyline (to inhibit monoamine oxidase), veratridine (100 μmol/l) elicited a phasic, peak-like increase in the efflux of tritium (about 90% of which was unchanged 3H-noradrenaline). This response to veratridine was abolished by TTX (1 μmol/l) and unaffected by the absence of external Ca2+; moreover, it was greatly reduced by either cocaine (10 μmol/l) or desipramine (1 μmol/l) and, hence brought about by carrier-mediated outward transport across the axonal membrane. 6) It is concluded that, in addition to its well-known action on the fast sodium channel, veratridine somehow increases the leakage of noradrenaline from storage vesicles; this “reserpine-like” effect of veratridine is resistant to TTX and therefore not a consequence of the drug-induced changes in the sodium permeability of the axolemma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 353 (1996), S. 193-199 
    ISSN: 1432-1912
    Keywords: Key words Noradrenaline ; Adrenaline ; Dopamine ; Total-body plasma clearance ; Pulmonary plasma clearance ; MAO inhibition ; COMT inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  To study the effects of inhibition of catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) on the removal of circulating catecholamines, anaesthetized rabbits were infused for 120 min with 3H-labelled noradrenaline, adrenaline and dopamine. Total-body plasma clearances (Cltot) and pulmonary fractional extractions (ERp) of the infused amines and the cardiac output of plasma (COp) were determined under steady-state conditions at the end of each of two consecutive 60-min treatment periods. MAO and COMT were inhibited by treatment with pargyline (40 mg/kg) and tolcapone (3 mg/kg followed by 1.5 mg/kg given every 30 min), respectively. Two groups of animals were studied. Group I involved animals treated with tolcapone throughout and given pargyline at the beginning of the second treatment period. In group II, pargyline was given at the beginning of the first, and the treatment with tolcapone was started at the beginning of the second treatment period. As previous experiments had shown that COMT inhibition alone is without any effect on Cltot of the three catecholamines considered here, the results obtained in the first treatment period of group I can be taken to reflect control results. At the end of the first treatment period, Cltot of noradrenaline, adrenaline and dopamine (expressed as a percentage of COp) was 88%, 85% and 142%, respectively, in group I (COMT inhibition) and 67%, 77% and 115%, respectively, in group II (MAO inhibition; P〈0.05 for the group difference regarding Cltot of noradrenaline and dopamine). MAO inhibition on top of COMT inhibition (group I) lowered Cltot of noradrenaline, adrenaline and dopamine by 23%, 12% and 26%, respectively, and COMT inhibition on top of MAO inhibition (group II) reduced Cltot of these catecholamines by 13%, 20% and 17%, respectively. At the end of the first treatment period, the pulmonary plasma clearance (Clp=ERp×COp) of noradrenaline and dopamine was 13 and 25 ml kg-1 min-1, respectively, in group I and 12 and 28 ml kg-1 min-1, respectively, in group II. Clp of adrenaline did not differ from zero in either group. Clp of noradrenaline and dopamine was reduced by 74% and 70%, respectively, when both enzymes were inhibited in group I and by 70% and 67%, respectively, when both enzymes were inhibited in group II. Hence, inhibition of either MAO or COMT alone had little, if any, effect on the removal of noradrenaline, adrenaline and dopamine on passage through the systemic and pulmonary circulation. Combined inhibition of both MAO and COMT was highly effective in reducing the pulmonary clearance of noradrenaline and dopamine, but produced only minor decreases in the total-body clearance of all three catecholamines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 267 (1970), S. 383-398 
    ISSN: 1432-1912
    Keywords: Cocaine ; Cold-Stored Tissues ; Neuronal Uptake of Nor-adrenaline ; Nictitating Membrane of Cat ; Supersensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Experiments were carried out on fresh isolated cat nictitating membranes as well as on muscles stored in the cold for 7 days. Storage reduced the cocaine-induced supersensitivity to (−)-noradrenaline but did not abolish it it also reduced responses to tyramine, and about halved the noradrenaline content of the tissue. Cocaine failed to potentiate responses of fresh or of stored muscles to the methoxamine (which is not taken up by adrenergic nerves). The incubation with 2.5 ml of 100 ng/ml of (−)-noradrenaline (in the presence of the inhibitor of catechol-O-methyl transferase), fresh muscles removed noradrenaline from the incubation medium at a rate of about 70 ng per gram of tissue per min; 10 Μg/ml of cocaine reduced rate of removal by 81%. Muscles stored in the cold removed less noradrenaline from the medium (about 45 ng/g×min−1) than fresh ones, and cocaine reduced the rate of removal by 56%. The neuronal uptake mechanism of the nictitating membrane does not seem to be stereoselective, since the rate of removal of (+)-noradrenaline from the incubation medium was similar to that of the (−)-isomer. It is concluded that cold storage of the muscle abolishes neither the neuronal uptake of noradrenaline nor the ability of cocaine to impair this uptake; however, both parameters were reduced. Since the sensitizing action of cocaine is similarly reduced, there is no reason to doubt the causal relation between impairment by cocaine of neuronal uptake and ensuing supersensitivity to (−)-noradrenaline.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...