Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 16351-16356 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 4971-4975 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hydrogen incorporation in silicon layers prepared by plasma-enhanced chemical-vapor deposition using silane dilution by hydrogen has been studied by infrared spectroscopy (IR) and elastic recoil detection analysis (ERDA). The large range of silane dilution investigated can be divided into an amorphous and a microcrystalline zone. These two zones are separated by a narrow transition zone at a dilution level of 7.5%; here, the structure of the material cannot be clearly identified. The films in/near the amorphous/microcrystalline transition zone show a considerably enhanced hydrogen incorporation. Moreover, comparison of IR and ERDA and film stress measurements suggests that these layers contain a substantial amount of molecular hydrogen probably trapped in microvoids. In this particular case the determination of the total H content by IR spectroscopy leads to substantial errors. At silane concentrations below 6%, the hydrogen content decreases sharply and the material becomes progressively microcrystalline. The features observed in the IR-absorption modes can be clearly assigned to mono- and/or dihydride bonds on (100) and (111) surfaces in silicon crystallites. The measurements presented here constitute a further indication for the validity of the proportionality constant of Shanks et al. [Phys. Status Solidi B 110, 43 (1980)], generally used to estimate the hydrogen content in "conventional'' amorphous silicon films from IR spectroscopy; additionally, they indicate that this proportionality constant is also valid for the microcrystalline samples. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 6943-6946 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The photoluminescence spectra of crystalline silicon samples are measured for temperatures below 1000 K. The optical transitions are analyzed in terms of excitonic and band-to-band transitions. From the modeling of the line shape we are able to determine the fundamental indirect band gap for temperatures up to 750 K. The temperature dependence follows the Varshni equation with Eg(0)=1.1692 eV, α=(4.9±0.2)×10−4 eV/K and β=(655±40) K. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 1425-1434 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The ground- and excited-state properties of both gas phase and crystalline ruthenocene, Ru(cp)2, are investigated using density functional theory. A symmetry-based technique is employed to calculate the energies of the multiplet splittings of the singly excited triplet states. For the crystalline system, a Buckingham potential is introduced to describe the intermolecular interactions between a given Ru(cp)2 molecule and its first shell of neighbors. The overall agreement between experimental and calculated ground- and excited-state properties is very good as far as absolute transition energies, the Stokes shift and the geometry of the excited states are concerned. An additional energy lowering in the 3B2 component of the 5a1′→4e1″ excited state is obtained when the pseudolinear geometry of Ru(cp)2 is relaxed along the low-frequency bending vibration. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 65 (1994), S. 456-465 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A method for containerless liquid-phase processing was developed which has practical application in process and property research on virtually any material which is involatile at the melting point. It combines aerodynamic and acoustic forces to support and position the levitated material. The design provides forced convection control of the thermal boundary in the gas surrounding beam-heated specimens, which stabilizes the acoustic forces and allows acoustic positioning necessary to stabilize the aerodynamic levitation forces on molten materials. Beam heating and melting at very high temperatures was achieved. Experiments were conducted on specimens with diameters in the range 0.25–0.4 cm, of density up to 9 g/cm3, at temperatures up to 2700 K, and in oxygen, air, or argon atmospheres. Unique liquid-phase processing results included deep undercooling of aluminum oxide, glass formation at exceptionally small cooling rates, complete melting and undercooling of YBa2Cu3Ox superconductor materials, direct formation of the YBa2Cu3Ox from the liquid phase, and the vaporization of volatile constituents from a low-liquefaction point glass to form a refractory, high melting material. The application of rapid containerless batch processing operations to materials synthesis is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 6088-6093 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We discuss defects created by focused Ga ion beam implantation in GaAs or AlGaAs/GaAs heterostructures using deep level transient spectroscopy (DLTS). A novel contact configuration which is sensitive to defects located at the boundary between implanted and unperturbed regions at a well-defined depth is presented. The DLTS spectra for these samples are dominated by a peak with an activation energy of Ea=0.38 eV. The results show that this peak is associated with implantation-induced damage independent of the ion species. The defect is also found in a sample with Schottky contacts on top of a Ga-implanted GaAs layer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 6457-6459 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: By photoluminescence and by Zeeman spectroscopy we study the characteristic 4f luminescence transition 3H5 → 3H6 at 1.0 eV of thulium in gallium arsenide which has been reported recently. It turns out that optically active Tm3+, which is present in mainly one specific type of center, does not occupy a simple substitutional lattice site. The results show a considerable tetragonal crystal field. The excitation mechanism of the 1.0-eV luminescence is investigated by photoluminescence excitation. The 3H5 → 3H6 is pumped most efficiently by trapping of free excitons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hydrogenated amorphous silicon has been prepared at a plasma excitation frequency in the very-high-frequency band at 70 MHz with the glow discharge technique at substrate temperatures between 280 and 50 °C. The structural properties have been studied using hydrogen evolution, elastic recoil detection analysis, and infrared spectroscopy. The films were further characterized by dark and photoconductivity and by photothermal deflection spectroscopy. With respect to films prepared at the conventional frequency of 13.56 MHz considerable differences concerning the electronic and structural properties are observed as the substrate temperature is decreased from 280 to 50 °C. Down to a substrate temperature of 150 °C the electronic film properties change only a little and the total hydrogen content cH and the degree of microstructure that can be directly correlated to cH increase only moderately. Below 150 °C the electronic properties deteriorate in the usual manner but still the total hydrogen content does not exceed 21 at. % even at a substrate temperature of 50 °C. It is argued that the influence of the higher excitation frequency on the plasma and on the growth kinetics plays a key role in this context by allowing a highly effective dissociation of the process gas with the maximum ion energies remaining at low levels. It is concluded that deposition processes at higher excitation frequencies can have important technological implications by allowing a decrease of the deposition temperature without losses in the material quality.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 1944-1944 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 6179-6186 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The excessive damage and high defect density generated during ion-beam etching of crystalline Si is characterized by Rutherford backscattering, photoluminescence, and transmission electron microscopy. In samples etched at room temperature, a highly damaged surface layer (d≈5 nm) with a large concentration of noble gas atoms is detected and analyzed using Rutherford backscattering in axial channeling geometry. Point defects due to the low-energy noble gas ion implantation are produced within a depth of 100 nm and deeper, and are monitored by their characteristic photoluminescence. The intensity of the noble-gas-defect photoluminescence is studied for different ion-beam energies (200–2000 eV) and crystal orientations. A threshold to produce the defects can then be determined, leading to an estimate of the number of vacancies contained in the noble gas defect. Annealing of etched samples at 650 °C causes the formation of different new photoluminescent centers. Although little is known about the structure of these defects, it is observed that the defects effectively getter copper. Further annealing of the Ar-etched samples at 1050 °C causes the formation of Ar bubbles with an average diameter of about 5 nm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...