Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 9 (1988), S. 61-71 
    ISSN: 1572-9567
    Keywords: benzene ; high pressure ; 2-methyl-2-propanol ; solid-liquid phase equilibrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Solid-liquid phase equilibria of the benzene + 2-methyl-2-propanol system have been investigated at temperatures from 278 to 323 K and pressures up to 300 MPa using a high-pressure optical vessel. The uncertainties of the measurements of temperature, pressure and composition are within ±0.1 K, ±0.5 MPa, and ±0.001 mole fraction, respectively. The freezing pressure at a constant composition increases monotonously with pressure. The eutectic point shifts to a higher temperature and benzene-rich composition with increasing pressure. In order to describe the pressure-temperature-composition relation of high-pressure solid-liquid phase equilibria, a new simple equation has been proposed as follows: $$In x_i (P,T) = - \frac{1}{{RT}}\{ C(T)[P - B(T)] + D(T)[P^2 - B(T)^2 ]\} $$ where B, C, and D are the temperature-dependent coefficients and are expressed by the polynomials of reciprocal of temperature. It is found that the solid-liquid coexistence curves of both eutectic systems and solid-solution systems can be correlated satisfactorily by this equation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...