Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Type 1 (insulin-dependent) diabetes mellitus ; HDL cholesterol ; apolipoprotein A-I ; apolipoprotein A-II ; kinetic analyses ; VLDL triglyceride ; lipolytic enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Concentrations of HDL cholesterol and apolipoprotein A-I are commonly increased in Type 1 (insul-independent) diabetes mellitus but the mechanisms whereby diabetes influences HDL metabolism have not been studied. We investigated the metabolism of HDL apoproteins A-I and II in normolipidaemic Type 1 diabetic men (n=17, HbA1 6.4–11.9%) without microalbuminuria but with a wide range of HDL cholesterol (0.85–2.10 mmol/l) and in nondiabetic men (n=18) matched for body mass index and the range of HDL cholesterol. Input rates and fractional catabolic rates for apolipoproteins A-I and II were determined following injection of 125I-apolipoprotein A-I and 131I-apolipoprotein A-II tracers. Additional multicompartmental analysis was performed using a model to describe the kinetics of HDL particles containing only apolipoprotein A-I (Lp A-I) and apolipoprotein A-I and apolipoprotein A-II (Lp A-I/ A-II). No gross differences from normal subjects were observed in the mean levels of lipids, lipoproteins, apoproteins and the lipolytic enzymes in the diabetic men as a result of the selection process. Furthermore, the relationship between apolipoprotein A kinetics and plasma HDL cholesterol levels appeared to be preserved in the diabetic group. However, some normal interrelationships were disrupted in the diabetic men. Firstly, the rate of apolipoprotein A-II synthesis was 22% lower than in control subjects (p〈0.05). Modelling indicated that this was due to decreased input of Lp A-I/A-II particles whereas the input of Lp A-I particles was similar in the two groups. Secondly, there was no correlation between VLDL triglyceride and HDL cholesterol or VLDL triglyceride and the fractional catabolic rate of apolipoproteins A-I and A-II in diabetic men in contrast to that seen in control subjects. We conclude that there is a disruption in the normal association between VLDL and HDL metabolism in Type 1 diabetic men and postulate that the observed differences may be due to the therapeutic use of exogenous insulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...