Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8838
    Keywords: anodic deposition ; manganese-molybdenum oxide electrode ; oxygen evolution ; seawater electrolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Manganese-molybdenum oxide electrodes were prepared by anodic deposition on an IrO2-coated titanium substrate at a constant current density of 600Am−2 from baths containing 0.2M MnSO4 and 0–0.1M Na2MoO4 at 90∘C and pH 0.5. These electrodes were characterised for oxygen evolution in the electrolysis at 1,000Am−2 in 0.5M NaCl solution at 30∘C and pH 8 or 12. The most active and stable oxygen evolving anode exhibited 100% efficiency for oxygen evolution, and an efficiency of 98.5% for over 1,500 h at pH 12 and of 96.5% for over 2,800 h at pH 8 of continuous electrolysis. X-ray diffraction measurement and XPS analysis indicated that the deposits consist of a nanocrystalline single γ-MnO2 type phase, and manganese and molybdenum in the deposits are in the Mn4+ and Mo6+ states. The electrochemical studies showed that the manganese-molybdenum oxide electrodes drastically reduced the electrocatalytic activity for chlorine evolution to the undetectable level, resulting in 100% efficiency for oxygen evolution, although the addition of molybdenum slightly increased the oxygen overpotential.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...