Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The AlON films grown on Si(100) substrates by using radio frequency (r.f.) magnetron sputtering from high purity aluminum (99.999% Al) target with a novel reactive gas-timing technique. The 100 nm thick of AlON films were deposited with 200 watts r.f. power and the substrate temperature is maintained at room temperature by the technique of gas-timing which varying flow-in sequence of high purity of Ar (99.999%) and N2 (99.9999%) gases fed into the sputtering chamber at 10:90 (sec) ratio. The composition and crystal orientation of AlON films affected by gas-timing of Ar and N2 were analyzed by Auger Electron Spectroscopy (AES) and X-ray diffraction (XRD). The oxygen atoms revealed by AES formed into a corporation in films was studied. This suggests that the oxygen contamination formed as AlOXNY compound may due to the residual oxygen in base pressure of 10-7 mbar and higher reactivity of oxygen in the reactor compared to nitrogen. The gas-timing technique used in the sputtering growth system shows the advantage of the oxygen quantity control, while the general sputtering process (without gas-timing technique) shows an increase of the oxygen composition depended on film thickness. The characterizations results clearly indicate that the gas-timing r.f. magnetron sputtering technique plays an important role to control the incorporation of oxygen and to form the nanocrystal-aluminum oxynitride films which very attractive for various sensors applications
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...