Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The AlON films grown on Si(100) substrates by using radio frequency (r.f.) magnetron sputtering from high purity aluminum (99.999% Al) target with a novel reactive gas-timing technique. The 100 nm thick of AlON films were deposited with 200 watts r.f. power and the substrate temperature is maintained at room temperature by the technique of gas-timing which varying flow-in sequence of high purity of Ar (99.999%) and N2 (99.9999%) gases fed into the sputtering chamber at 10:90 (sec) ratio. The composition and crystal orientation of AlON films affected by gas-timing of Ar and N2 were analyzed by Auger Electron Spectroscopy (AES) and X-ray diffraction (XRD). The oxygen atoms revealed by AES formed into a corporation in films was studied. This suggests that the oxygen contamination formed as AlOXNY compound may due to the residual oxygen in base pressure of 10-7 mbar and higher reactivity of oxygen in the reactor compared to nitrogen. The gas-timing technique used in the sputtering growth system shows the advantage of the oxygen quantity control, while the general sputtering process (without gas-timing technique) shows an increase of the oxygen composition depended on film thickness. The characterizations results clearly indicate that the gas-timing r.f. magnetron sputtering technique plays an important role to control the incorporation of oxygen and to form the nanocrystal-aluminum oxynitride films which very attractive for various sensors applications
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...