Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 473-476 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The coatings formed on the H2O2-treated titanium substrate by electrodeposition were used in order to evaluate the difference of transformations in the simulated body fluid (SBF) and the culture medium with MG63 cells. A porous hydroxyapatite (HA) coating with relatively low crystallinity and large crystallites was formed on the H2O2-treated titanium substrate by electrodeposition. HA coatingtransformed for 5 days in the SBF consisted of densely-packed rod-shaped crystallites with various differentiated grains. Octacalcium phosphate (OCP) and HA coating transformed for 5 days in the culture medium consisted of both flake-shaped and rod-shaped crystallites with indistinct grains. MG-63 cells were well attached and proliferated during the transformation into this flaked-shaped OCP. This difference between transformations of the HA coatings in the acellular SBF and in the culture medium with MG63 cells is due to different ion composition in each solution and proteins in culture medium
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 513-516 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The development of phosphate glasses for use in orthopaedic implants has attracted much interest because their chemical and physical properties make them suitable for use as bone-bonding materials. We prepared various compositions of CaO-P2O5-MO or CaO-P2O5-M2O (M: K, Li, Na, Mg, Zn) glasses to measure ion release, solubility and bioactivity. The compositions with (Ca,M)/P molarratio 0.6 were fixed P2O5 mol% content at 45.45 mol%, and varying MO or M2O mol% at 10, 20 and 30 mol%. Ca2+ ion release properties were investigated in 0.1M potassium acetate with pH 6 at 37oC by immersing 50 mg of powder into 100 ml of acidic buffer solution. The highest and lowest extent of released Ca2+ ion was observed for composition with 10 mol% of K2O and 30 mol% of MgO, respectively. The weight loss in distilled water at 37oC was measured. Solubility increased withdecreasing CaO content, but decreased with increasing MgO content. Bioactivity in the simulated body fluid at 37oC was measured
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The purpose of this study was to evaluate the cell affinity of calcium phosphate glassscaffold in the system of CaO-CaF2-P2O5-MgO-ZnO, which is already reported that promoted the bone-like tissue formation in vitro and formed new bone in Sprague-Dawley rats. We prepared calcium phosphate glass saffolds with three-dimensionally interconnected pores of 200~500 µm. Commercial HA scaffold was employed as a control in this study. Bone marrow cells were collected from the healthy human donors and cultured within the prepared scaffolds. After 2, 4, 6, and 8 weeks, hMSCs/scaffold were fixed and stained with hematoxylin and eosin. hMSCs were continuously proliferated both in the experimental and control groups at every incubation period. The number of cells was higher in the experimental group than that of the control group, however, there was no significant difference (p〉0.05). Extracellular matrices could be observed at the 2nd and 4th days in theexperimental and control groups, respectively. The extracellular matrices were more abundant in the experimental group at all periods. The prepared calcium phosphate glass scaffolds are expected effective in bone tissue engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 729-732 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In tissue engineering, a scaffold helps determine 3-dimensional morphology, increases cell survival, provides initial mechanical stability, supports tissue ingrowth, aids in the formation of tissue structure. Chitosan is the partially deacetylated form of chitin that can be extracted from crustacean. It degrades in the body to non-harmful and non-toxic compounds and has been used in various fieldssuch as nutrition, metal recovery and biomaterials. Hydroxyapatite, a major inorganic component of bone, has been used extensively for biomedical implant applications and bone regeneration due to its bioactive, biodegradable and osteoconductive properties. The application, however, of hydroxyapatite is limited due to own brittleness. Since the natural bone is a composite mainly consisted of organic collagen and inorganic hydroxyapatite, many efforts have been made to modify hydroxyapatite by polymers. In this study, organic/inorganic hybrids were fabricated solid-liquid phase separation and a subsequent freeze-drying process. The microstructure, mechanical properties, and bioactivity of the scaffolds with various contents of hydroxyapatite were studied. The structure of the scaffolds prepared was macroporous and interconnected. The compressive mechanical properties such as compressive modulus and yield strength were improved according to the increase of hydroxyapatite contents mixed with chitosan. After 7 days of sample immersion in a simulated body fluid, for scaffolds containing hydroxyapatite, numerous bonelike apatites were formed on the surfaces of the pore walls. This study suggests that desirable pore structure, mechanical properties, and bioactivity of the hybrid scaffolds might be achieved through controlling the ratio of hydroxyapatite and chitosan
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 815-818 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The purpose of this study was to evaluate the cytotoxicity of alginate-encapsulting ferrite particles in vitro. Various ferrite particles such as Ba-ferrite, Sr-ferrite, Co-ferrite, Co/Ni-ferrite were prepared by sol-gel process. Ferrite particles were encapsulated via calcium alginate process with different alginate contents ranged from 10 to 100 wt%. Mouse-fibroblastic NCTC L-929 cells were cultured in RPMI-1640 medium with 10% fetal bovine serum. The alginate-encapsulating ferriteswere extracted in 5 ml of distilled water under pH 6.5 at 121°C for 1 h in accordance with ISO 10993-12. In vitro cytotoxicity was evaluated by WST-1. The results of this study indicated that the alginate-encapsulting ferrite particles affected cell viability by increasing alginate contents. Especially, alginate-encapsulating process were enhanced cell viability of ferrites such as Sr-ferrite, Co/Ni-ferrite, and Ba-Ferrite when alginate content was 10 wt%
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 827-830 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Ceramic ferrites can be used to cancer-treatment. Heating of certain organs or tissue up to temperature between 42oC and 45oC preferentially for cancer therapy is called hyperthermia. We synthesized ferrites with various compositions in the system Co1-xNixFe2O4 as hyperthermic thermoseed in cancer-treatment and evaluated their effects on the necrosis of cancer cells under alternating magnetic field in vivo as well as in vitro. When a CoFe2O4 was placed into 0.2 ml distilledwater, the greatest temperature change in this study, Δ T=29.3oC, was observed. More than half of the carcinoma cells were dead after exposure to alternating magnetic field using CoFe2O4, while normal cells were survived more than 60%. The injection of this ferrite particles into the tumor bearing mice was able to suppress the number and volume of tumors. CoFe2O4 is expected the useful hyperthermic thermoseed in cancer-treatment because it exhibited the greatest necrosis of carcinoma cells in vitro and in vivo
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Alkali oxides were added to glass frit in order to lower the firing temperature of dentalporcelain, and the effects of Li2O and B2O3 on the thermal properties and chemical solubility of low-fusing dental porcelain were investigated.The glass transition temperature(Tg) and softening temperature(Ts) of glass frits were decreased remarkably by adding Li2O, but the coefficient of thermal expansion(CTE) was increased with Li2O. In the case of adding B2O3, the thermal properties were unchanged. Tg of B0L4, B2L4 and B4L4 specimens were lower than 500°C and Ts were lower than 550°C. The chemical solubility of prepared low-fusing dental porcelain with these glass frits were 37.3,43.9, and 49.2µg·cm-2 respectively. The chemical solubility was increased by adding Li2O and B2O3, but all the results were below 100µg·cm-2 and satisfactory to ISO Standards. Further, the chemical solubility of the commercial low-fusing dental porcelains were 52.6µg·cm-2 for Ceramco Finesse(Clear), 70.8µg·cm-2 for Duceram-LFC(TC) and that of conventional dental porcelain, CeraMax(T-C), was 34.8µg·cm-2
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 909-912 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Dental impression materials are used to register or reproduce the form and relationship of the teeth and oral tissues. They should not be torn when removing from the wet mouth after setting. Nowadays, silica is widely used as filler to overcome the low mechanical strength of the dental impression materials. The purpose of this study was to synthesize high strength glass in the system ofMgO-CaO-Al2O3-SiO2 and investigate its usefulness according to ISO standard after mixing with addition silicone. Commercial products, Contrast, Examix, Express, and Perfect-F were selected as control group. When the prepared glass filler was introduced in addition silicone impression material, tear strength was drastically increased significantly than that of the control group, keeping the consistency. All experimental groups showed higher tear stength than that of control groups. As theamount of filler content increases, tear strength was increased. Strain in compression, recovery from deformation, and linear dimensional change were satisfied the ISO standard either all the experimental or control groups. Therefore, calcium-substituted magnesium aluminosilicate glass in the system of 12.5MgO-17.5CaO-20Al2O3-50SiO2 is expected the useful filler in the light body of addition silicone impression materials
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 933-936 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We tried to prepare a new filling material for bone defects using β-Tricalcium phosphate (β-TCP) particles and Histoacryl®. The aim of this study was to evaluate physical and bioactive properties of cyanoacrylate-based filling materials for bone defects in the dental field. The shear bond strength values of the Histoacryl® and β-TCP/ Histoacryl® compounds stored in double-distilledwater decreased with the increase of the amount of added β-TCP. The temperature change of the β-TCP/ Histoacryl® compounds during polymerization decreased compared to that of the Histoacryl®. The cytotoxicity of the filling materials decreased when the amount of added β-TCP was increased. In the evaluation of bioactivity, hydroxyapatite (HA) was precipitated on the surface and inner space of the porous filling material 4 weeks after immersion in SBF. This precipitation of HA on the surface of the filling material was also confirmed in the XRD result. These results indicate that our novel β-TCP/Histoacryl® compounds have the potential to serve as filling materials for bone defects in the dental field
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 585-588 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Cytotoxicity test was essential for the pre-clinical evaluation of bioceramics. Proliferation assays such as MTT, XTT and WST-1 were commonly used for measuring biocompatibility. WST-1 was more convenient than MTT because of its water-solubility and storage condition. The calcium phosphate glass and β-TCP have been used for bone substitute, and some magnetic ferrites have been used for hyperthermic treatment. L929, mouse fibroblast cell, was the representative cell-line for in vitro biocompatibility test. The extracts of test samples were prepared by ISO10993-12:2002. The biocompatibilities of the extracts were measured by MTT and WST-1 assay and their pH were measured with pH meter. The cellular survival rate of CPG was the lowest and the results of the WST-1 test showed results similar to those of the MTT test. Thus, proliferation assays using WST-1 may be conveniently and routinely applicable to pre-clinical evaluation of bioceramics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...