Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Opus-Repositorium ZIB  (3)
  • 2020-2024  (3)
Datenquelle
  • Opus-Repositorium ZIB  (3)
Erscheinungszeitraum
Jahr
Sprache
  • 1
    Publikationsdatum: 2024-02-09
    Beschreibung: We previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. The design process of NFEPP was based on mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands, recognizing that GPCRs function differently under pathological versus healthy conditions. We now present an additional and novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels and their dependence on parameters of inflamed and healthy tissue (pH, radicals). The model is validated against in vitro experimental data for the ligands NFEPP and fentanyl at different pH values and radical concentrations. We observe markedly reduced binding affinity and calcium channel inhibition for NFEPP at normal pH compared to lower pH, in contrast to the effect of fentanyl. For increasing radical concentrations, we find enhanced constitutive G-protein activation but reduced ligand binding affinity. Assessing the different effects, the results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.
    Sprache: Englisch
    Materialart: article , doc-type:article
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-09
    Beschreibung: In our previous studies, a new opioid (NFEPP) was developed to only selectively bind to the 𝜇-opoid receptor (MOR) in inflamed tissue and thus avoid the severe side effects of fentanyl. We know that NFEPP has a reduced binding affinity to MOR in healthy tissue. Inspired by the modelling and simulations performed by Sutcliffe et al., we present our own results of coarse-grained molecular dynamics simulations of fentanyl and NFEPP with regards to their interaction with the 𝜇-opioid receptor embedded within the lipid cell membrane. For technical reasons, we have slightly modified Sutcliffe’s parametrisation of opioids. The pH-dependent opioid simulations are of interest because while fentanyl is protonated at the physiological pH, NFEPP is deprotonated due to its lower pKa value than that of fentanyl. Here, we analyse for the first time whether pH changes have an effect on the dynamical behaviour of NFEPP when it is inside the cell membrane. Besides these changes, our analysis shows a possible alternative interaction of NFEPP at pH 7.4 outside the binding region of the MOR. The interaction potential of NFEPP with MOR is also depicted by analysing the provided statistical molecular dynamics simulations with the aid of an eigenvector analysis of a transition rate matrix. In our modelling, we see differences in the XY-diffusion profiles of NFEPP compared with fentanyl in the cell membrane.
    Sprache: Englisch
    Materialart: article , doc-type:article
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-02-09
    Beschreibung: Initiated by mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands in normal versus diseased (inflamed) environments, we previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. Uniquely, this design recognised that GPCRs function differently under pathological versus healthy conditions. We now present a novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels associated with parameters of inflamed tissue (pH, radicals). By means of molecular dynamics simulations, we also assessed qualitative changes of the reaction rates due to additional disulfide bridges inside the GPCR binding pocket and used these rates for stochastic simulations of the corresponding reaction jump process. The modelling results were validated with in vitro experiments measuring calcium currents and G-protein activation. We found markedly reduced G-protein dissociation and calcium channel inhibition induced by NFEPP at normal pH, and enhanced constitutive G-protein activation but lower probability of ligand binding with increasing radical concentrations. These results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.
    Sprache: Englisch
    Materialart: reportzib , doc-type:preprint
    Format: application/pdf
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...