Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1573-4919
    Schlagwort(e): human endothelial cells ; mechanical stress ; immediate early genes ; protein kinase C ; calcium
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Abstract Restenosis after initially successful balloon angioplasty of coronary artery stenosis remains a major problem in clinical cardiology. Previous studies have identified pathogenetic factors which trigger cell proliferation and vascular remodeling ultimately leading to restenosis. Since there is evidence that endothelial cells adjacent to the angioplasty wound area synthesize factors which may initiate this process, we investigated the effects of mechanical stimulation on endothelial gene expression in vitro and focussed on the influence of sustained mechanical stress on expression of immediate early genes which have previously been shown to be induced in the vascular wall in vivo. Primary cultured human umbilical vein endothelial cells (HUVEC) and the human endothelial cell line EA.hy 926 were plated on collagen-coated silicone membranes and subjected to constant longitudinal stress of approximately 20% for 10 min to 6 h. Total RNA was isolated and the expression of the immediate early genes c-Fos and Egr-1 was studied by Northern blot analysis. We found a rapid upregulation c-Fos and Egr-1 mRNA which started at 10 min and reached its maxima at 30 min. HUVEC lost most of their stretch response after the third passage whereas immediate early gene expression was constantly in EA.hy 926 cells. Using specific inhibitors we investigated the contribution of several signal transduction pathways to stretch-activated Egr-1 mRNA expression. We found significant suppression of stretch-induced Egr-1 mRNA expression by protein kinase C (PKC) inhibition (p 〈 0.05) and by calcium depletion (EA.hy926, p 〈 0. 05; HUVEC, p = 0.063). No effect on stretch-activated Egr-1 mRNA expression was detected by inhibition of protein kinase A, blockade of stretch-activated cation channels or inhibition of microtubule synthesis. We conclude that sustained mechanical strain induces Egr-1 mRNA expression by PKC- and calcium-dependent mechanisms.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...