Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 4955-4970 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The morphological instability of a growing epitaxially strained dislocation-free solid film is analyzed. An evolution equation for the film surface is derived in the dilute limit of vacancies based on surface diffusion driven by a stress-dependent chemical potential. From the time-dependent linear stability problem the conditions for which a growing film is unstable are determined. It is found that the instability is driven by the lattice mismatch between the film and the substrate; however, low temperatures as well as elastically stiff substrates are stabilizing influences. The results also reveal that the critical film thickness for instability depends on the growth rate of the film itself. Detailed comparison with experimental observations indicates that the instability described exhibits many of the observed features of the onset of the "island instability.''
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 5258-5266 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A fixed volume of liquid is placed on a horizontal disk spinning at a constant angular speed. The liquid forms a film that thins continuously due to centrifugal drainage and evaporation or thins to a finite thickness when surface absorption counterbalances drainage. A nonlinear evolution equation describing the shape of the film interface as a function of space and time is derived, and its stability is examined using linear theory. When there is either no mass transfer or there is evaporation from the film surface, infinitesimal disturbances decay for small wave numbers and are transiently stable for larger wave numbers. When absorption is present at the free surface, the film exhibits three different domains of stability: disturbances of small wave numbers decay, disturbances of intermediate wave numbers grow transiently, and those of larger wave numbers grow exponentially.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 5267-5277 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A thin liquid film drains radially off the surface of a horizontal, rotating substrate. Evaporation of solvent from the film increases the fluid viscosity and reduces the radial outflow. Governing equations are developed for the shape of the film interface as a function of space and time, as well as the axisymmetric solvent-concentration distribution, for both unit order and large Peclet numbers. The numerical solution of these equations elucidates how a spinning film with either a corrugated or a flat free surface evolves over time in the presence of a time-varying concentration (and viscosity) field. A correlation for the final film thickness in terms of the physical variables of the system is deduced from the governing equations, the result of which shows good agreement to published experimental results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 11 (1999), S. 48-57 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The competition between the viscous spreading of liquid on a substrate and the absorption by the substrate is studied using several models. The local behaviors near the contact lines, the time scales of droplet spreading and disappearance, and the dependencies on the physical factors that enter are discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 1646-1655 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The competition between viscous spreading of a liquid on a substrate and its absorption by a dry porous substrate is studied in two dimensions. The effect of capillary suction into the pores vies with contact-line slip on the substrate to determine the lifetime of the drop. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 19 (1987), S. 403-435 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 8 (1976), S. 57-74 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 2319-2336 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The manufacturing of single crystals of multi-component materials with uniform material properties is frequently hampered by the presence of morphological instabilities during the solidification. In this paper we extend into the nonlinear regime our previous work on the influence of shear flows on the linear stability of the solid/liquid interface during the directional solidification of binary alloys. The flows are generated by unidirectional or nonplanar harmonic oscillations of the crystal parallel to the mean interface position, and oscillations with physically realizable amplitudes and frequencies are found to be useful for stabilization purposes. A strongly nonlinear equation which governs the evolution of the interface in the limit of high surface energy, a weak flow and thermodynamic equilibrium is derived, and a weakly nonlinear analysis of this equation is performed. For the unidirectional case, it is found that oscillations with sufficiently large amplitude will change the initial bifurcation from super- to subcritical. For the nonplanar case, it is found that subcritical instability of roll, square and hexagonal cells is favored as the amplitude of the flow is increased. Thus, some of the stabilization due to the flow may be lost at finite amplitude, but substantial stabilization can be retained. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 313-321 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A thin liquid layer rests on a horizontal plane that is subject to a two-dimensional spatially periodic temperature distribution. Thermocapillary forces on the free surface result in a dimpling interface and a steady viscous flow. Long-wave theory is used to study this system and to determine whether or not there is film dryout locally, and how such dimpling and/or dryout is affected by London–van der Waals forces, surface tension, and hydrostatic effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 231-232 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Long-wave instabilities of thin viscous films flowing down inclined planes are studied. Numerical solutions of the full long-wave evolution equation show that wave profiles grow superexponentially and evolve toward breaking when the surface tension takes on realistically small values. This contrasts with the solutions of the Kuramoto–Sivashinsky equation, which do not tend toward breaking. The use of the full equation thus dispenses with the need to introduce the formally small curvature terms into the Kuramoto–Sivashinsky equation, as suggessted by Rosenau and Oron [Phys. Fluids A 1, 1763 (1989)].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...