Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019
  • 1995-1999  (4,399)
  • 1920-1924
  • 1997  (2,351)
  • 1995  (2,048)
  • Biochemistry and Biotechnology  (2,635)
  • Chemical Engineering  (1,148)
  • Numerical Methods and Modeling  (616)
Material
Years
  • 2015-2019
  • 1995-1999  (4,399)
  • 1920-1924
Year
  • 1997  (2,351)
  • 1995  (2,048)
  • 1998  (2,086)
  • 1996  (1,729)
  • 101
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 9-22 
    ISSN: 0006-3592
    Keywords: condensation reactions ; disaccharides ; equilibria ; glucoamylase ; kinetics ; monosaccharides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Arabinose, fructose, galactose, myo-inositol, lyxose, mannose, ribose, and xylose were incubated individually and with glucose in the presence of Aspergillus niger glucoamylase at pH 4.5 and 45°C. Glucoamylase condenses galactose, glucose, and mannose individually into disaccharides. It also produces mixed disaccharides when each of the eight carbohydrates is incubated with glucose. Many products were identified by gas chromatography of the derivatized reaction mixtures followed by mass spectroscopy of the individual chromatographic peaks. Galacto-, gluco-, or mannopyranosyl rings appear to be present at the nonreducing ends of all the disaccharides produced. Molecules linked through primary hydroxyl groups have the highest equilibrium constants of all products formed, since these bonds are thermodynamically favored. However, glucoamylase is capable of forming bonds with many available hydroxyl groups, as previously demonstrated when it was incubated with glucose alone. Formation rates of different bonds linking different residues vary widely. These results demonstrate that glucoamylase has a wide selectivity toward residues it will condense into disaccharides and toward bonds it will form between them. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 9-22, 1997.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 134-139 
    ISSN: 0887-3585
    Keywords: CASP2 ; fold-recognition ; HMM ; structure library ; remote homology ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We discuss how methods based on hidden Markov models performed in the fold-recognition section of the CASP2 experiment. Hidden Markov models were built for a representative set of just over 1,000 structures from the Protein Data Bank (PDB). Each CASP2 target sequence was scored against this library of HMMs. In addition, an HMM was built for each of the target sequences and all of the sequences in PDB were scored against that target model, with a good score on both methods indicating a high probability that the target sequence is homologous to the structure. The method worked well in comparison to other methods used at CASP2 for targets of moderate difficulty, where the closest structure in PDB could be aligned to the target with at least 15% residue identity. Proteins, Suppl. 1:134-139, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 172-178 
    ISSN: 0887-3585
    Keywords: protein folding ; force field ; molecular dynamics ; secondary structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Structure predictions for two targets from the CASP2 meeting are presented and compared with the experimental structure. These predictions were made using a novel simplified flexible geometry representation of protein structure. The method uses potentials which mimic the physical forces involved in protein folding in a simplified representation of protein structure, and not by directly using data derived from statistical analyses of known protein structures. Additionally, the method is designed to work with a single protein sequence. The method was successful in generating reasonable protein-like structures, with mainly buried hydrophobic residues, exposed charges, and a good fraction of secondary structure. Specific details of the structure were remarkably close to the experimental structure. However, the overall fold in both cases was totally wrong. Some specific causes of this incorrect folding are suggested and a major improvement to the algorithm proposed. Proteins, Suppl. 1:172-178, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 198-204 
    ISSN: 0887-3585
    Keywords: protein-protein targets ; docking ; receptor binding site ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The docking section of CASP2 is reviewed. Seven small molecule ligand-protein targets and one protein-protein target were available for predictions. Many of the small molecule ligand complexes involved serine proteases. Overall results for the small molecule targets were good, with at least one prediction for each target being within 3 Å root-mean-square deviation (RMSD) for nearly all targets and within 2 Å RMSD for over half the targets. However, no single docking method seemed to consistently perform best. In addition, the predictions closest to the experimental results were not always those ranked the highest, pointing out that the evaluation (scoring) of potential solutions is still an area that needs improvement. The protein-protein target proved more difficult. None of the predictions did well in reproducing the geometry of the complex, although in many cases the interacting surfaces of the two proteins were predicted with reasonable accuracy. This target consisted of two large proteins and, therefore was a demanding target for docking methods. Proteins, Suppl. 1:198-204, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    ISSN: 0887-3585
    Keywords: molecular docking ; flexible docking ; protein-ligand interaction ; molecular flexibility ; conformational analysis ; drug design ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We have applied our docking program FLEXX to all eight CASP2 targets involving protein complexes with small ligands. Of the seven targets that were kept in the CASP2 experiment, we could solve two. We found important parts of the solution in four other examples, and were unsuccessful on the remaining example. This paper discusses all predictions in detail. Each of our prediction runs took just a few minutes of computer time on a standard workstation and could thus be demonstrated in real time at the CASP meeting. We believe that this speed is the prime strength of our program FLEXX. In quality, our predictions are competitive with those produced by other predictors. The experiment showed that possible objectives of improvement of the FLEXX program are to incorporate relevant aspects of receptor flexibility, deal with water molecules in the receptor pocket, allow for a postoptimization to refine favorable complexes, and improve the scoring function. Proteins, Suppl. 1:221-225, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    ISSN: 0887-3585
    Keywords: viral antigen ; epitope insertion ; recombinant protein ; x-ray structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We report the crystal structure of MalE-B133, a recombinant form of the maltodextrin-binding protein (MBP) of Escherichia coli carrying an inserted amino-acid sequence of a B-cell epitope from the preS2 region of the hepatitis B virus (HBV). The structure was determined by molecular replacement methods and refined to 2.7 Å resolution. MalE-B133 is an insertion/deletion mutant of MBP in which residues from positions 134 to 142, an external α helix in the wild-type structure, are replaced by a foreign peptide segment of 19 amino acids. The inserted residues correspond to the preS2 sequence from positions 132 to 145 and five flanking residues that arise from the creation of restriction sites. The conformation of the recombinant protein, excluding the inserted segment, closely resembles that of wild-type MBP in the closed maltose-bound form. MalE-B133 was shown by previous studies to display certain immunogenic and antigenic properties of the hepatitis B surface antigen (HBsAg), which contains the preS2 region. The crystal structure reveals the conformation of the first nine epitope residues (preS2 positions 132 to 140) exposed on the surface of the molecule. The remaining five epitope residues (preS2 positions 141 to 145) are not visible in electron density maps. The path of the polypeptide chain in the visible portion of the insert differs from that of the deleted segment in the structure of wild-type MBP, displaying a helical conformation at positions 134 to 140 (preS2 sequence numbering). A tripeptide (Asp-Pro-Arg) at the N terminus of the helix forms a stable structural motif that may be implicated in the cross-reactivity of anti-HBsAg antibodies with the hybrid protein. Proteins 27:1-8 © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 36-46 
    ISSN: 0887-3585
    Keywords: GOR ; neural networks ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We propose a binary word encoding to improve the protein secondary structure prediction. A binary word encoding encodes a local amino acid sequence to a binary word, which consists of 0 or 1. We use an encoding function to map an amino acid to 0 or 1. Using the binary word encoding, we can statistically extract the multiresidue information, which depends on more than one residue. We combine the binary word encoding with the GOR method, its modified version, which shows better accuracy, and the neural network method. The binary word encoding improves the accuracy of GOR by 2.8%. We obtain similar improvement when we combine this with the modified GOR method and the neural network method. When we use multiple sequence alignment data, the binary word encoding similarly improves the accuracy. The accuracy of our best combined method is 68.2%. In this paper, we only show improvement of the GOR and neural network method, we cannot say that the encoding improves the other methods. But the improvement by the encoding suggests that the multiresidue interaction affects the formation of secondary structure. In addition, we find that the optimal encoding function obtained by the simulated annealing method relates to non-polarity. This means that nonpolarity is important to the multiresidue interaction. Proteins 27:36-46 © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 59-70 
    ISSN: 0887-3585
    Keywords: comparative protein modeling ; sequence similarity ; sequence-structure compatibility ; model quality ; CD40 receptor-ligand interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The interaction between the human B cell receptor CD40 and its ligand on T cells is critical for B cell proliferation and the regulation of humoral immune responses. CD40 is a member of the tumor necrosis factor receptor (TNFR) family. We report here the construction and analysis of a detailed three-dimensional model of the TNFR-homologous extracellular region of CD40. This study provides an example for structure-based model building in the presence of low sequence similarity. The assessment of model quality and sequence-structure compatibility is emphasized, and limitations of the model are discussed. The current CD40 model predicts structural details beyond the backbone level. Features of the CD40 ligand binding site are discussed in conjunction with the results of a previous mutagenesis study. Proteins 27:59-70 © 1997 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    ISSN: 0887-3585
    Keywords: thermophilic β-glycosidase ; protein conformational dynamics ; frequency domain fluorometry ; circular dichroism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The conformational dynamics of β-glycosidase from Sulfolobus solfataricus was investigated by following the emission decay arising from the large number of tryptophanyl residues that are homogeneously dispersed in the primary structure. The fluorescence emission is characterized by a bimodal lifetime distribution, suggesting that the enzyme structure contains rigid and flexible regions, properly located in the macromolecule. The enzyme activity and thermostability appear to be related to the dynamic properties of these regions as evidenced by perturbation studies of the enzyme structure at alkaline pH and by addition of detergents such as SDS. The pH increase affects the protein dynamics with a remarkable loss of thermal stability and activity; these changes occur without any significant variation in the secondary structure as revealed by far-UV dichroic measurements. In the presence of 0.02% (w/v) SDS at alkaline pH, the enzymatic activity and thermostability are recovered. Under these conditions, the conformational dynamics appear to be similar to that evidenced at neutral pH. Further increases in SDS concentration, at alkaline pH, render the activity and thermostability of β-glycosidase similar to those observed in the absence of detergent. Proteins 27:71-79 © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 118-130 
    ISSN: 0887-3585
    Keywords: homology modeling ; glutathione transferases ; theta class GSTs ; glutathione ; menaphthyl sulfate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A tertiary model of the human GSTT2 Theta class glutathione transferase is presented based on the recently solved crystal structure of a related thetalike isoenzyme from Lucilia cuprina. Although the N-terminal domains are quite homologous, the C-terminal domains share less than about 20% identity. The model is used to consolidate the role of Ser 11 in the active site of the enzyme as well as to identify other residues and mechanisms of likely catalytic importance. The T2 subfamily of theta class enzymes have been shown to inactivate reactive sulfate esters arising from arylmethanols. A possible reaction pathway involving the conjugation of glutathione with one such sulfate ester, 1-menaphthyl-sulfate, is described. It is also proposed that the C-terminal region of the enzyme plays an important role in allowing substrate access to the active site. Proteins 27:118-130 © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 96-109 
    ISSN: 0887-3585
    Keywords: IL-6/IL-6R complex ; gp130 ; cytokines ; model building ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The cytokines IL-6, LIF, CNTF, OSM, IL-11, and CT-1 have been grouped into the family of IL-6-type cytokines, since they all require gp130 for signal transduction. Interestingly, gp130 binds directly to OSM, whereas complex formation with the other cytokines depends on additional receptor subunits. Only limited structural information on these cytokines and their receptors is available. X-ray structures have been solved for the cytokines LIF and CNTF, whose up-up-down-down four-helix bundle is common to all of these cytokines, and for the receptors of hGH and prolactin, which contain two domains with a fibronectin III-like fold. Since cocrystallization and x-ray analysis of the up to four different proteins forming the receptor complexes of the IL-6-type cytokines is unlikely to be achieved in the near future, model building based on the existing structural information is the only approach for the time being. Here we present model structures of the complexes of human and murine IL-6 with their receptors. Their validity can be deduced from the fact that published mutagenesis data and the different receptor specificity of human and murine IL-6 can be understood. It is now possible to predict the relative positions and contacts for all molecules in their respective complexes. Such information can be used for the rational design of cytokine and receptor antagonists, which may have a valuable therapeutic perspective. Proteins 27:96-109 © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 131-143 
    ISSN: 0887-3585
    Keywords: protein structure ; protein dynamics ; molecular mechanics ; NOE ; NMR ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Acyl carrier proteins (ACPs) from spinach and from Escherichia coli have been used to demonstrate the utility of proton NMR for comparison of homologous structures. The structure of E. coli ACP had been previously determined and modeled as a rapid equilibrium among multiple conformational forms (Kim and Prestegard, Biochemistry 28:8792-8797, 1989). Spinach ACP showed two slowly exchanging forms and could be manipulated into one form for structural study. Here we compare this single form to postulated multiple forms of E. coli ACP using the limited amount of NOE data available for the spinach protein. A number of long-range NOE contacts were present between homologous residues in both spinach and E. coli ACP, suggesting tertiary structural homology. To allow a more definitive structural comparison, a method was developed to use spinach ACP NOE constraints to search for regions of structural divergence from two postulated forms of E. coli ACP. The homologous regions of the two protein sequences were aligned, additional distance constraints were extracted from the E. coli structure, and these were mapped onto the spinach sequence. These distance constraints were combined with experimental NOE constraints and a distance geometry simulated annealing protocol was used to test for compatibility of the constraints. All of the experimental spinach NOE constraints could be successfully combined with the E. coli data, confirming the general hypothesis of structural homology. A better fit was obtained with one form, suggesting a preferential stabilization of that form in the spinach case. Proteins 27:131-143 © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 144-153 
    ISSN: 0887-3585
    Keywords: calcium ; plant ; environmental stress ; TCH genes ; signal transduction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Plants adapt to various stresses by developmental alterations that render them less easily damaged. Expression of the TCH2 gene of Arabidopsis is strongly induced by stimuli such as touch and wind. The gene product, TCH2, belongs to the calmodulin (CaM) family of proteins and contains four highly conserved Ca2+-binding EF-hands. We describe here the structure of TCH2 in the fully Ca2+-saturated form, constructed using comparative molecular modeling, based on the x-ray structure of paramecium CaM. Like known CaMs, the overall structure consists of two globular domains separated by a linker helix. However, the linker region has added flexibility due to the presence of 5 glycines within a span of 6 residues. In addition, TCH2 is enriched in Lys and Arg residues relative to other CaMs, suggesting a preference for targets which are more negatively charged. Finally, a pair of Cys residues in the C-terminal domain, Cys126 and Cys131, are sufficiently close in space to form a disulfide bridge. These predictions serve to direct future biochemical and structural studies with the overall aim of understanding the role of TCH2 in the cellular response of Arabidopsis to environmental stimuli. Proteins 27:144-153 © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    ISSN: 0887-3585
    Keywords: tetrahydrofolate ; protein crystallization ; folate coenzymes ; purine synthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A bifunctional enzyme that catalyzes the conversion of formyltetrahydrofolate to methylene-tetrahydrofolate (5,10-methenyltetrahydrofolate cyclohydrolase and 5,10-methylene tetrahydrofolate dehydrogenease), has been subcloned from a cDNA library, purified to homogeneity, and crystallized. The crystals belong to space group I222, with unit cell dimensions of a= 64.5 Å b= 84.9 Å c= 146.1 Å. The crystal unit cell and diffraction is consistent with an asymmetric unit consisting of the enzyme monomer, and a specific volume of the unit cell of 3.2 Å3/Da. The crystals diffract to at least 2.8 Å resolution after flash-cooling, when using a rotating anode x-ray source and an RAXIS image plate detector. A 2.56 Å resolution native data set has been collected at beamline X12-C at the NSLS. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 272-278 
    ISSN: 0887-3585
    Keywords: anion hydrolysis ; CA inhibitors ; substrates/inhibitors adducts ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A study was undertaken to investigate whether diverse carbonic anhydrase (CA) isozymes (both native Zn as well as cobalt-substituted) are able to catalyze the hydrolysis of anions such as cyanide, cyanate, and thiocyanate. A controversy exists between the crystallographic and spectroscopic data of CA II-anion adducts. In the former case it has been shown that “metal poisons” such as CN-and CNO-are not directly coordinated to the active site Zn(II) ion whereas spectroscopic studies indicate otherwise. A theoretical study in the above systems did not resolve this controversy, since it was calculated that all three anions can act as CA substrates. In this paper we prove experimentally that none of them may act as substrates of CA and propose an explanation to the above controversy, discussing the mode of binding of small molecules within the enzyme active site. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 360-366 
    ISSN: 0887-3585
    Keywords: disulfide bond ; extracellular protein ; intracellular protein ; short-, medium-, and long-range interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The free energy difference between folded and unfolded state is about the same for most proteins and it is not more than the energy of a few noncovalent interactions. In addition to the numerous noncovalent interactions, some proteins contain one or more disulfide bonds, which, as covalent crosslinks, significantly stabilize their tertiary structure. Correlation between the presence of disulfide bond(s), and the number noncovalent interresidue interactions of various kinds is analyzed here. The number of interactions per residue is almost the same for all protein. Also the number of long-range interactions per residue is the same in all proteins. Proteins with S(SINGLE BOND)S bond(s) (extracellular proteins) have more medium-range and fewer short-range interactions than those without S(SINGLE BOND)S bonds. However, the difference is independent of the number of these covalent crosslinks. We concluded that the different distributions of the various kinds of noncovalent interaction reflect the needs of proteins in the different environments, the extracellular and the intracellular ones, rather than the presence of the disulfide bond(s). We also pointed out that the observed differences in the distributions of short- and medium-range interactions are in good agreement with different secondary structure compositions of extracellular and intracellular proteins. Proteins 27:360-366, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 336-344 
    ISSN: 0887-3585
    Keywords: hydrophobicity ; molecular evolution ; local propensities ; reverse hydrophobic effect ; protein stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: To investigate how the properties of individual amino acids result in proteins with particular structures and functions, we have examined the correlations between previously derived structure-dependent mutation rates and changes in various physical-chemical properties of the amino acids such as volume, charge, α-helical and β-sheet propensity, and hydrophobicity. In most cases we found the ΔG of transfer from octanol to water to be the best model for evolutionary constraints, in contrast to the much weaker correlation with the ΔG of transfer from cyclohexane to water, a property found to be highly correlated to changes in stability in site-directed mutagenesis studies. This suggests that natural evolution may follow different rules than those suggested by results obtained in the laboratory. A high degree of conservation of a surface residue's relative hydrophobicity was also observed, a fact that cannot be explained by constraints on protein stability but that may reflect the consequences of the reverse-hydrophobic effect. Local propensity, especially α-helical propensity, is rather poorly conserved during evolution, indicating that non-local interactions dominate protein structure formation. We found that changes in volume were important in specific cases, most significantly in transitions among the hydrophobic residues in buried locations. To demonstrate how these techniques could be used to understand particular protein families, we derived and analyzed mutation matrices for the hypervariable and framework regions of antibody light chain V regions. We found a surprisingly high conservation of hydrophobicity in the hypervariable region, possibly indicating an important role for hydrophobicity in antigen recognition. Proteins 27:336-344, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 345-359 
    ISSN: 0887-3585
    Keywords: alphavirus structure ; Semliki Forest virus capsid protein ; autocatalysis ; capsid assembly ; conformational changes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Alphaviruses are enveloped, insect-borne viruses, which contain a positive-sense RNA genome. The protein capsid is surrounded by a lipid membrane, which is penetrated by glycoprotein spikes. The structure of the Sindbis virus (SINV) (the type virus) core protein (SCP) was previously determined and found to have a chymotrypsin-like structure. SCP is a serine proteinase which cleaves itself from a polyprotein. Semliki Forest virus (SFV) is among the most distantly related alphaviruses to SINV. Similar to SCP, autocatalysis is inhibited in SFCP after cleavage of the polyprotein by leaving the carboxy-terminal tryptophan in the specificity pocket. The structures of two different crystal forms (I and II) of SFV core protein (SFCP) have been determined to 3.0 Å and 3.3 Å resolution, respectively. The SFCP monomer backbone structure is very similar to that of SCP. The dimeric association between monomers, A and B, found in two different crystal forms of SCP is also present in both crystal forms of SFCP. However, a third monomer, C, occurs in SFCP crystal form I. While monomers A and B make a tail-to-tail dimer contact, monomers B and C make a head-to-head dimer contact. A hydrophobic pocket on the surface of the capsid protein, the proposed site of binding of the E2 glycoprotein, has large conformational differences with respect to SCP and, in contrast to SCP, is found devoid of bound peptide. In particular, Tyr184 is pointing out of the hydrophobic pocket in SFCP, whereas the equivalent tyrosine in SCP is pointing into the pocket. The conformation of Tyr184, found in SFCP, is consistent with its availability for iodination, as observed in the homologous SINV cores. This suggests, by comparison with SCP, that E2 binding to cores causes major conformational changes, including the burial of Tyr184, which would stabilize the intact virus on budding from an infected cell. The head-to-tail contacts found in the pentameric and hexameric associations within the virion utilize the same monomer surface regions as found in the crystalline dimer interfaces. Proteins 27:345-359, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 469-469 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 471-480 
    ISSN: 0887-3585
    Keywords: protein hydration ; potentials-of-mean-force ; hydrophilic hydration ; hydrophobic hydration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present a statistical mechanical description of biomolecular hydration that accurately describes the hydrophobic and hydrophilic hydration of a model α-helical peptide. The local density of water molecules around a biomolecule is obtained by means of a potential-of-mean-force (PMF) expansion in terms of pair- and triplet-correlation functions of bulk water and dilute solutions of nonpolar atoms. The accuracy of the method is verified by comparing PMF results with the local density and site-site correlation functions obtained by molecular dynamics simulations of a model α-helix in solution. The PMF approach quantitatively reproduces all features of the peptide hydration determined from the molecular dynamics simulation. Regions of hydrophobic hydration near the Cα and Cβ atoms along the helix are well reproduced. The hydration of exposed polar groups at the N- and C-termini of the helix are also well described by the theory. A detailed comparison of the local hydration by means of site-site radial distribution functions evaluated with the PMF theory shows agreement with the molecular dynamics simulations. The formulation of this theory is general and can be applied to any biomolecular system. The accuracy, speed of computation, and local character of this theory make it especially suitable for studying large biomolecular systems. © 1997 Wiley-Liss Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 507-516 
    ISSN: 0887-3585
    Keywords: insulin ; despentapeptide ; structure ; fibrillation ; x-ray crystallography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 Å spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy. © 1997 Wiley-Liss Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 517-522 
    ISSN: 0887-3585
    Keywords: Bacillus subtilis ; ferrochelatase ; hemH ; protein structure prediction ; α/β barrel ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An α/β barrel is predicted for the three-dimensional (3D) structure of Bacillus subtilis ferrochelatase. To arrive at this structure, the THREADER program was used to find possible homologous 3D structures and to predict the secondary structure for the ferrochelatase sequence. The secondary structure was fit by hand to the selected homologous 3D structure then the MODELLER program was used to predict the fold of ferrochelatase. Molecular biological information about the conserved residues of ferrochelatase was used as the criteria to help select the homologous 3D structure used to predict the fold of ferrochelatase. Based on the predicted structure possible, ligands binding to the iron and protoporphyrin IX are discussed. The structure has been deposited in the Brookhaven database as ID 1FJI. © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 556-566 
    ISSN: 0887-3585
    Keywords: protein minimization ; protein engineering ; disulfide mutant ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The characteristic CXC chemokine disulfide core of interleukin-8 (IL-8) has been rearranged in a variant replacing the 9 - 50 disulfide with a 9 - 38 disulfide. The new variant has been characterized by its binding affinity to IL-8 receptors A and B and the erythrocyte receptor DARC. This variant binds the three receptors with affinities between 500- and 2,500-fold lower than wild-type IL-8. Binding affinity results are also reported for the variant with alanine substituted for both cysteines 9 and 50. The Glu38 → Cys/Cys50 → Ala IL-8 crystallizes in space group P212121 with cell parameters a = 46.4, b = 49.2, and c = 69.5 Å, and has been refined to an R-value of 19.4% for data from 10 to 2 Å resolution. Analysis of the structure confirms the new disulfide arrangement and suggests that changes at Ile10 may be the principal cause of the lowered affinities. © 1997 Wiley-Liss Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 375-379 
    ISSN: 0887-3585
    Keywords: protease II ; prohormone convertase ; paired basic amino acid cleaving enzyme ; ionic strength ; substrate inhibition ; rate-limiting step ; kinetic deuterium isotope effect ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Basic amino acid pairs in polypeptides represent important markers for processing enzymes to produce biologically active products. Such enzymes related to the serine peptidase subtilisin have recently been identified in eukaryotes. Herein is described and kinetically characterized a new type of processing enzyme, oligopeptidase B, which is encountered in the prokaryote Escherichia coli, and belongs to the prolyl oligopeptidase family of serine peptidases. The enzyme hydrolyzes the peptides at the carboxy end of dibasic sites by two orders of magnitude faster with respect to monobasic substrates. The kcat/Km is extremely high, 63 μM-1 s-1, for the substrate benzyloxycarbonyl-L-arginyl-L-arginyl-7-(4- methylcoumaryl)amide. The bell-shaped pH dependence of the rate constant is perturbed by some ionizing group(s). This effect is abolished at 1 M NaCl. In addition, high ionic strength inhibits the reaction considerably by increasing Km, which is indicative of an electrostatic interaction between the arginyl residues and the enzymatic carboxy groups. In distinction from that found with most serine endopeptidases, kinetic deuterium isotope measurements with oligopeptidase B indicate that the rate-limiting step of the reaction is a physical step rather than a chemical one characterized by general acid/base catalysis. The present result will contribute to our understanding of the processing phenomena in prokaryotes, as well as in higher organisms. Proteins 28:375-379, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 125
    ISSN: 0887-3585
    Keywords: protein folding ; denatured states ; fast diffusive motions ; internal dynamics ; phosphoglycerate kinase ; incoherent quasielastic neutron scattering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Quasielastic neutron scattering experiments performed on yeast phosphoglycerate kinase in the native form and denatured in 1.5 M guanidinium chloride reveal a change in the fast (picosecond time scale) diffusive internal dynamics of the protein. The momentum and energy transfer dependences of the scattering for both states are fitted by an analytical model in which, on the experimentally accessible picosecond time scale and angstrom length scale, the dynamics of a fraction of the nonexchangeable hydrogens in the protein is described as a superposition of vibrations with uniform diffusion in a sphere, the rest of the hydrogens undergoing only vibrational motion. The fraction diffusing changes, from ≈60% in the native protein to ≈82% in the denatured protein. The radius of the sphere also changes slightly, from ≈1.8 Å in the native protein to ≈2.2 Å in the denatured protein. Possible implications of these results for the general protein folding problem are discussed. Proteins 28:380-387, 1997 © 1997 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 126
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 344-359 
    ISSN: 0887-3585
    Keywords: helix stabilizing/destabilizing interactions ; helix-capping motifs ; helical boundaries ; structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A novel helix-coil transition theory has been developed. This new theory contains more types of interactions than similar theories developed earlier. The parameters of the models were obtained from a database of 351 nonhomologous proteins. No manual adjustment of the parameters was performed. The interaction parameters obtained in this manner were found to be physically meaningful, consistent with current understanding of helix stabilizing/destabilizing interactions. Novel insights into helix stabilizing/destabilizing interactions have also emerged from this analysis. The theory developed here worked well in sorting out helical residues from amino acid sequences. If the theory was forced to make prediction on every residue of a given amino acid sequence, its performance was the best among ten other secondary structural prediction algorithms in distinguishing helical residues from nonhelical ones. The theory worked even better if one only required it to make prediction on residues that were “predictable” (identifiable by the theory); 〉90% predictive reliability could be achieved. The helical residues or segments identified by the helix-coil transition theory can be used as secondary structural contraints to speed up the prediction of the three-dimensional structure of a protein by reducing the dimension of a computational protein folding problem. Possible further improvements of this helix-coil transition theory are also discussed. Proteins 28:344-359, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 127
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 388-404 
    ISSN: 0887-3585
    Keywords: homology modeling ; cytochrome P450 ; sequence alignment ; structure prediction ; maximal cliques ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A computational strategy for homology modeling, using several protein structures comparison, is described. This strategy implies a formalized definition of structural blocks common to several protein structures, a new program to compare these structures simultaneously, and the use of consensus matrices to improve sequence alignment between the structurally known and target proteins. Applying this method to cytochromes P450 led to the definition of 15 substructures common to P450cam, P450BM3, and P450terp, and to proposing a 3D model of P450eryF. Proteins 28:388-404, 1997 © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 128
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 421-433 
    ISSN: 0887-3585
    Keywords: molecular recognition ; binding energy landscapes ; recognition nucleus ; structural harmony ; minimal frustration principle ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Computational structure prediction of streptavidin-peptide complexes for known recognition sequences and a number of random di-, tri-, and tetrapeptides has been conducted, and mechanisms of peptide recognition with streptavidin have been investigated by a new computational protocol. The structural consensus criterion, which is computed from multiple docking simulations and measures the accessibility of the dominant binding mode, identifies recognition motifs from a set of random peptide sequences, whereas energetic analysis is less discriminatory. The predicted conformations of recognition tripeptide and tetrapeptide sequences are also in structural harmony and composed of peptide fragments that are individually unfrustrated in their bound conformation, resulting in a minimally frustrated energy landscape for recognition peptides. Proteins 28:421-433, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 405-420 
    ISSN: 0887-3585
    Keywords: classification ; clustering ; protein domains ; genome annotation ; hidden Markov model ; Caenorhabditis elegans ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Databases of multiple sequence alignments are a valuable aid to protein sequence classification and analysis. One of the main challenges when constructing such a database is to simultaneously satisfy the conflicting demands of completeness on the one hand and quality of alignment and domain definitions on the other. The latter properties are best dealt with by manual approaches, whereas completeness in practice is only amenable to automatic methods. Herein we present a database based on hidden Markov model profiles (HMMs), which combines high quality and completeness. Our database, Pfam, consists of parts A and B. Pfam-A is curated and contains well-characterized protein domain families with high quality alignments, which are maintained by using manually checked seed alignments and HMMs to find and align all members. Pfam-B contains sequence families that were generated automatically by applying the Domainer algorithm to cluster and align the remaining protein sequences after removal of Pfam-A domains. By using Pfam, a large number of previously unannotated proteins from the Caenorhabditis elegans genome project were classified. We have also identified many novel family memberships in known proteins, including new kazal, Fibronectin type III, and response regulator receiver domains. Pfam-A families have permanent accession numbers and form a library of HMMs available for searching and automatic annotation of new protein sequences. Proteins: 28:405-420, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 452-453 
    ISSN: 0887-3585
    Keywords: crystallography ; F-actin crosslinker ; actin binding ; fimbrin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We have crystallized the N-terminal actin binding domain (ABD1) of human fimbrin, a representative member of the largest class of actin crosslinking proteins. Diffraction from these crystals is consistent with the orthorhombic space group P212121 (a = 50.03 Å, b = 61.24 Å, c = 102.30 Å). These crystals contain one molecule in the asymmetric unit and diffract to at least 1.9 Å resolution. The crystal structure of ABD1 will be the first structure of an actin crosslinking domain. Proteins 28:452-453, 1997. © 1997 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 131
    ISSN: 0887-3585
    Keywords: molecular dynamics ; TMD algorithm ; GROMOS ; oncogenes ; G-proteins ; molecular switch ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The transitions between the water-equilibrated structures of the GTP and GDP forms of Ha-ras-p21 have been calculated by using the targeted molecular dynamics (TMD) method (Schlitter et al., Mol. Sim. 10:291-309, 1993) both in vacuo and with explicit solvent simulation. These constrained molecular dynamics calculations result in different pathways, depending on the nucleotide bound. Each pathway consists in a sequence of transitions affecting six segments of the protein, four of them forming a hydrophilic cleft around the nucleotide. The transitions are initiated by the removal or introduction of the γ-phosphate of the nucleotide and proceed sequentially, crossing several low-energy transition states. The movements are transmitted either by direct interactions between the segments or through the nucleotide. The GTP to GDP pathway is initiated by the removal of the nucleotide γ-phosphate. This gives some space to Gly12, Gly13, and Val14. Their movement is transmitted to the target recognition domain and the switch II region, forcing these segments to adopt another position. In a second step the target recognition domain and the switch II region undergo conformational transitions to reach an intermediate conformation. Finally, there is a relaxation of the target recognition domain to its final state that forces the switch II region to reach its target conformation. The calculated pathways allow the identification of many residues that play an important role in the conformational changes, explain the altered transformation properties of some, and suggest mutations to alter the pathway. Proteins 28:434-451, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 132
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 167-171 
    ISSN: 0887-3585
    Keywords: sequence profiles building-blocks ; secondary helix ; strand turn knowledge-based ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Blind predictions of the local structure of nine CASP2 targets were made using the I-sites library of short sequence - structure motifs, revealing strengths and weaknesses in this new knowledge-based method. Many turns between secondary structural elements were accurately predicted. Estimates of the confidence of prediction correlated well with the accuracy over the whole set. Bias toward structures used to develop the library was minimal, probably because of the extensive use of cross-validation. However, helix positions were better predicted by the PHD program. The method is likely to be sensitive to the quality of the sequence alignment. A general measure for evaluating local structure predictions is suggested. Proteins, Suppl. 1:167-171, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 133
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 492-507 
    ISSN: 0887-3585
    Keywords: folding intermediates ; NMR ; protein folding ; dimethylsulfoxide ; near-UV circular dichroism ; lysozyme ; molten globules ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A partly folded state of hen egg-white lysozyme has been characterized in 50% DMSO. Low concentrations of DMSO (〈10%) have little effect on the overall folded conformation of lysozyme as seen from 1H NMR chemical shift dispersion. At increasing DMSO concentrations (〉10%) a cooperative transition of the structure to a new, partially folded state is observed. This transition is essentially complete by ∼50% DMSO. NMR studies show an overall decrease in chemical shift dispersion with marked broadening of many resonances. A substantial number of backbone and side chain-side chain NOEs suggests the presence of secondary and tertiary interactions in the intermediate state. Tertiary organization of the aromatic residues is also demonstrated by enhanced near-UV circular dichroism and limited exposure of tryptophans as monitored by iodide quenching of fluorescence. The intermediate state exhibits enhanced binding to hydrophobic dyes. Further, the structural transition from this state to a largely unfolded conformation is cooperative. H/D exchange rates of several amide protons and four indole protons of tryptophans (W28, W108, W111, and W123), measured by refolding from 50% DMSO at different time intervals reveal that protection factors are high for the helical domain, whereas NH groups in the triple stranded antiparallel β-sheet domain are largely solvent-exposed. An ordered hydrophobic core in the intermediate state comprising of helix A, helix B, and helix D is consistent with the high protection factors observed. The structured intermediate in 50% DMSO resembles the early kinetic intermediate observed in the refolding of hen egg white lysozyme, as well as a molten globule state of equine lysozyme at low pH. The results demonstrate the potential use of nonaqueous structure perturbing solvents like DMSO to stabilize partially folded conformations of proteins. Proteins 29:492-507, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 508-516 
    ISSN: 0887-3585
    Keywords: conformational changes ; compact and flat native structures ; metastable states ; lattice model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present the results of lattice Monte Carlo simulations of protein folding in the framework of a model taking into account (i) the dependence of the energy of interaction of amino-acid residues on their orientation and (ii) the rigidity of the polypeptide chain with respect to the formation of kinks. If the chain is flexible, the final protein structures are predicted to be compact. Increasing the energy cost of creation of kinks is found to favor the formation of flat structures mimicking an ideal antiparallel β sheet. For compact structures, the kinetics of folding exhibit the standard two-phase regime (a rapid collapse to one of the metastable state, followed by slow reconfiguration of the chain to the native structure). For flat structures, the transition to the native state is often gradual. Proteins 29:508-516, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 135
    ISSN: 0887-3585
    Keywords: cellulosome ; cellulases ; cohesin domain ; scaffoldin subunit ; EF-hand motif ; molecular modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The cross-species specificity of the cohesin-dockerin interaction, which defines the incorporation of the enzymatic subunits into the cellulosome complex, has been investigated. Cohesin-containing segments from the cellulosomes of two different species, Clostridium thermocellum and Clostridium cellulolyticum, were allowed to interact with cellulosomal (dockerin-containing) enzymes from each species. In both cases, the cohesin domain of one bacterium interacted with enzymes from its own cellulosome in a calcium-dependent manner, but the same cohesin failed to recognize enzymes from the other species. Thus, in the case of these two bacteria, the cohesin-dockerin interaction seems to be species-specific. Based on intra- and cross-species sequence comparisons among the different dockerins together with their known specificities, we tender a prediction as to the amino-acid residues critical to recognition of the cohesins. The suspected residues were narrowed down to only four, which comprise a repeated pair located within the calcium-binding motif of two duplicated sequences, characteristic of the dockerin domain. According to the proposed model, these four residues do not participate in the binding of calcium per se; instead, they appear to serve as recognition codes in promoting interaction with the cohesin surface. Proteins 29:517-527, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 545-552 
    ISSN: 0887-3585
    Keywords: BTK ; XLA ; SH3 domain ; TH domain ; proline-rich peptide ; p120cbl ; peptide binding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: X-linked agammaglobulinemia (XLA), an inherited disease, is caused by mutations in the Bruton's tyrosine kinase (BTK). The absence of functional BTK leads to failure of B-cell differentiation; this incapacitates antibody production in XLA patients, who suffer from recurrent, sometimes lethal, bacterial infections. BTK plays an important role in B-cell development; it interacts with several proteins in the context of signal transduction. Point mutation in the BTK gene that leads to deletion of C-terminal 14 aa residues of BTK SH3 domain was found in a patient family. To understand the role of BTK, we studied binding of BTK SH3 domain (aa 216-273, 58 residues) and truncated SH3 domain (216-259, 44 residues) with proline-rich peptides; the first peptide constitutes the SH3 domain of BTK, while the latter peptide lacks 14 amino acid residues of the C terminal. Proline-rich peptides selected from TH domain of BTK and p120cbl were studied. It is known that BTK TH domain binds to SH3 domains of various proteins. We found that BTK SH3 domain binds to peptides of BTK TH domain. This suggests that BTK SH3 and TH domains may associate in inter- or intramolecular fashion, which raises the possibility that the kinase may be regulating its own activity by restricting the availability of both its ligand-binding modules. We also found that truncated SH3 domain binds to BTK TH domain peptide less avidly than does normal SH3 domain. Also, we show that the SH3 and truncated SH3 domains bind to peptide of p120cbl, but the latter domain binds weakly. It is likely that the truncated SH3 domain fails to present to the ligand the crucial residues in the correct context, hence the weaker binding. These results delineate the importance of C terminal in binding of SH3 domains and indicate also that improper folding and the altered binding behavior of mutant BTK SH3 domain likely leads to XLA. Proteins 29:545-552, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 137
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 528-548 
    ISSN: 0887-3585
    Keywords: cytokines ; IL-6 ; IL-6 receptor complexes ; electrostatic potential ; homology modeling ; molecular dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Interleukin-6 (IL-6) is a multifunctional cytokine that regulates cell growth, differentiation, and cellular functions in many cell lineages. Recently, evidences for the formation of an active hexameric complex with an IL-6:IL-6Rα:gp130 stoichiometry of 2:2:2 have been obtained by different experimental approaches. Analysis of the electrostatic potential complementarity between IL-6 and its receptors has been used, in this study, to guide the assembly of homology-based 3D models of the components. The results strongly support a mechanism whereby the active cytokine (IL-6:IL-6Rα) associates with the signal transducing gp130 protein, and the trimeric complex formed further dimerizes to form the hexameric species. Furthermore, computational simulations of the multiprotein complexes provide a rationalization of data from mutation experiments and highlight some key protein-protein interactions which have not yet been the subject of mutagenesis studies. Proteins 29:528-544, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 553-561 
    ISSN: 0887-3585
    Keywords: metal ligands ; mutagenesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Phosphotriesterase (PTE) is a zinc metalloenzyme that catalyzes the hydrolysis of an extensive array of organophosphate pesticides and mammalian acetylcholinesterase nerve agents. Although the three-dimensional crystal structure of PTE has been solved (M. M. Benning et al., Biochemistry 34:7973-7978, 1995), the precise functions of the individual amino acid residues that interact directly with the substrate at the active site are largely unknown. To construct mutants of PTE with altered specificities for particular target substrates, a simple methodology for generating a library of mutants at specific sites was developed. In this investigation, four of the six protein ligands to the binuclear metal site (His-55, His-57, His-201, and His-230) were targeted for further characterization and investigation. Using the polymerase chain reaction (PCR) protocols, a library of modified PTE genes was generated by simultaneously creating random combinations of histidine and cysteine codons at these four positions. The 16 possible DNA sequences were isolated and confirmed by dideoxy-DNA sequencing. The 16 mutant proteins were expressed in Escherichia coli and grown with the presence or absence of 1 mM CoCl2, ZnSO4, or CdSO4in the growth medium. When grown in the presence of CoCl2, the H57C protein cell lysate showed greater activity for the hydrolysis of paraoxon than the wild type PTE cell lysate. H201C and H230C exhibited up to 15% of the wild-type activity, while H55C, a green protein, was inactive under all assay conditions. All other mutants had 〈10-5 of wild-type activity. None of the purified mutants that exhibited catalytic activity had a significantly altered Km for paraoxon. Proteins 29:553-561, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 139
    ISSN: 0887-3585
    Keywords: hydrothermal vent ; vestimentiferan ; hemoglobin ; primary structure ; phylogenetic relationships ; sulfide binding-site ; symbiosis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The deep-sea tube worm Riftia pachyptila Jones possesses a multi-hemoglobin system with three different extracellular Hbs: two dissolved in the vascular blood, V1 (ca. 3,500 kDa) and V2 (ca. 400 kDa), and one in the coelomic fluid, C1 (ca. 400 kDa). V1 Hb consists of four heme-containing, globin chains (b-e) and four linker chains (L1-L4). V2 and C1 Hbs are exclusively built from globin chains, six for V2 (a-f) and five for C1 (a-e). The complete amino acid sequence of the isolated monomeric globin chain b, common to all Riftia Hbs, has been determined by automated Edman degradation sequencing of the peptides derived by digestion with trypsin, chymotrypsin, thermolysin, and CNBr. This polypeptide chain is composed of 144 amino acid residues, providing a Mr of 16, 135.0 Da. Moreover, the primary sequence of chain b revealed 3 Cys residues at position 4, 75, and 134. Cys-4 and Cys-134 are located at positions where an intra-chain disulfide bridge is formed in all annelid, vestimentiferan, or pogonophoran chains, but Cys-75 is located at a unique position only found in three globin chains belonging to Lamellibrachia and Oligobrachia, a vestimentiferan and a pogonophoran. In both groups, Hbs can bind sulfide reversibly to fuel the chemosynthetic process of the symbiotic bacteria they harbor. Sulfide-binding experiments performed on purified Hb fractions (i.e., V1, V2, and C1 Hbs) suggest that free Cys residues on globin chains, and the numerous Cys found in linker chains, as determined previously by ESI-MS, may be the sulfide binding-sites. Blocking the free Cys by N-ethylmaleimide, we confirmed that free cysteines were involved in sulfide-binding but did not account for the whole sulfide-binding capacity of V1 Hb. Furthermore, a phylogenetic tree was constructed from 18 globin-like chains of annelid, vetimentiferan, and pogonophoran extracellular Hbs to clarify the systematic position of tubeworms. Riftia chain b clearly belongs to the “strain A” family with 30 to 80% identity with the other sequences analyzed. Its position in the tree confirmed a close relationship between vestimentiferan, pogonophoran, and annelid Hbs. Proteins 29:562-574, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 140
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 1-1 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 2-6 
    ISSN: 0887-3585
    Keywords: protein structure prediction ; community-wide experiment ; CASP ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 142
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 575-582 
    ISSN: 0887-3585
    Keywords: 310 helix ; r Aib residue ; polypeptides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Computer simulations have been used to design a polypeptide with a 310 helix conformation. The study has been been performed taking advantage of the intrinsic helix forming tendency of α-Aminoisobutyric acid. In order to avoid the formation of the α helix, which is the other common helical conformation adopted by α-Aminoisobutyric acid-based peptides, retropeptide bonds have been included in the sequence. Thus, retropeptides are not able to form the intramolecular hydrogen bonding interactions characteristic of the α helix. The influences of both the peptide length and the solvent have been examined and compared with those of the polypeptide without retropeptide bonds. Proteins 29:575-582,1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 143
    ISSN: 0887-3585
    Keywords: deformation zones ; prediction map building ; homology modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Five models by homology containing insertions and deletions and ranging from 33% to 48% sequence identity to the known homologue, and one high sequence identity (85%) model were built for the CASP2 meeting. For all five low identity targets: (i) our starting models were improved by the Internal Coordinate Mechanics (ICM) energy optimization, (ii) the refined models were consistently better than those built with the automatic SWISS-MODEL program, and (iii) the refined models differed by less than 2% from the best model submitted, as judged by the residue contact area difference (CAD) measure [Abagyan, R.A., Totrov, M.J. Mol. Biol. 268:678-685, 1997]. The CAD measure is proposed for ranking models built by homology instead of global root-mean-square deviation, which is frequently dominated by insignificant yet large contributions from incorrectly predicted fragments or side chains. We demonstrate that the precise identification of regions of local backbone deviation is an independent and crucial step in the homology modeling procedure after alignment, since aligned fragments can strongly deviate from the template at various distances from the alignment gap or even in the ungapped parts of the alignment. We show that a local alignment score can be used as an indicator of such local deviation. While four short loops of the meeting targets were predicted by database search, the best loop 1 from target T0028, for which the correct database fragment was not found, was predicted by Internal Coordinate Mechanics global energy optimization at 1.2 Å accuracy. A classification scheme for errors in homology modeling is proposed. Proteins, Suppl. 1:29-37, 1997.© 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 43-49 
    ISSN: 0887-3585
    Keywords: graph theory ; clique-finding ; comparative modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We constructed five comparative models in a blind manner for the second meeting on the Critical Assessment of protein Structure Prediction methods (CASP2). The method used is based on a novel graph-theoretic clique-finding approach, and attempts to address the problem of interconnected structural changes in the comparative modeling of protein structures. We discuss briefly how the method is used for protein structure prediction, and detail how it performs in the blind tests. We find that compared to CASP1, significant improvements in building insertions and deletions and sidechain conformations have been achieved. Proteins, Suppl. 1:43-49, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 145
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 14-28 
    ISSN: 0887-3585
    Keywords: comparative modeling ; model assessment ; protein ; structure ; CASP2 ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An assessment is presented for all submissions to the comparative modeling challenge in the 1996 Critical Assessment of Structure Prediction (CASP2). Of the original 12 target structures, 9 were solved prior to the meeting: 8 by X-ray crystallography and 1 by NMR spectroscopy. These targets varied over a large range of difficulty, as assessed by the percentage sequence identity with the principal parent structure, which ranged from 20% up to 85%. The overall quality of the models reflected the similarity of the principal parent. As expected, when the sequence alignment was correct, the core was accurately modeled, with the largest deviations occurring in the loops. Models were built which gave Cα root-mean-square deviations (RMSDs) compared with the observed structure of 〈1 Å for targets with high parental similarity; even at 26% sequence identity, the best model structures had Cα deviations of only 2.2 Å. Overall, these deviations are comparable with those observed between the parent structure and the target, but locally there are several examples where the model approaches closer to the target than does the parent. There were three targets below 25% sequence identity, and the models generated for these targets were, in general, significantly less accurate. This principally reflects errors in the alignment which, if systematically shifted, can generate Cα RMSDs 〈18 Å. Compared with CASP1, the geometry of the models was significantly improved with no D-amino acids. By far the major contribution to RMSD error was the alignment accuracy, which varied from 100% down to 7% over the range of targets. In the structurally variable regions, global shifts, caused by hinge bending, were the major source of error, giving significantly lower local RMSDs than global RMSDs. In over 50% of these noncore regions, the difference between global and local RMSDs was more than 3 Å, and was as high as 10 Å for one structurally variable region. For the side chains, the χ1 RMSDs are strongly correlated with the Cα RMSDs. For models with Cα deviations less than 1 Å, on average 78.5% of side chains are placed in the correct rotamer, although the χ1 RMSDs, though clearly better than random, were disappointing at around 46°. As the backbone deviations increased, the side chain placement became less accurate, with an average χ1 RMSD of 75° on a 1.5-2.5 Å Cα backbone (average 51.4% correct rotamer). Refinement by energy minimization or molecular dynamics made only minor adjustments to improve local geometry and generally made small, but not significant, improvements to the RMSD. In total, 19 groups submitted 62 models (89 coordinate sets) that could be assessed. Most modelers used manual adjustments to sequence alignments and, in general, good alignments were obtained down to 25% sequence identity. The modeling methods ranged from “classical” modeling, involving core building followed by loop and side chain addition, to more sophisticated approaches based on probability distributions, Monte Carlo sampling or distance geometry. For each target, several groups produced equally good models, given the expected errors in the structures (about 0.5 Å). No one method came out as clearly superior, although the approaches that inherit directly from the parents generally performed better than the more radical techniques. However, for each target there were some poor models, usually reflecting a poor sequence alignment, and the range of accuracy for each target is therefore large. Fully automated methods are able to perform very well for “easy” targets (85% sequence identity with parent), but when modeling using a distantly related parent, care and expertise, especially in performing the alignment, still appear to be important factors in generating accurate models. Proteins, Suppl. 1:14-28, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 146
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 68-73 
    ISSN: 0887-3585
    Keywords: homology modeling ; energy minimization ; distance restraints ; protein structure ; prediction errors ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Comparative modeling targets 1, 3, 9, and 17 were predicted by alignment of multiple sequences and structures, when available, followed by minimization using the program AMMP. The minimization used improved potentials, and distance restraints for regions of common structure. New prediction procedures were evaluated. Three tested solvent corrections did not significantly improve the predictions. Target 17 had 85.3% sequence identity with the parent and no insertions or deletions. The prediction had a root-mean-square deviation from target 17 of 0.56 Å on Cα atoms, and 0.59 Å for the ligand atoms, which verified the accuracy of the minimization. Targets 1, 3, and 9 had 36.4%, 46.7%, and 33.3% identity with the parent sequences, and predictions resulted in root-mean-square deviations for 79-85% of Cα atoms of 1.49, 1.11, and 1.24 Å, respectively. Conformational differences between parent and target crystal structures were difficult to predict. The use of distance restraints and multiple structures improved the positioning of gaps in sequence alignment. Distance restraints did not overcome errors in sequence alignment or ambiguities due to conformational variation in proteins. Predictions for targets 3 and 9 successfully reduced large deviations between parent and target structures. Proteins, Suppl. 1:68-73, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. i 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 148
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 165-170 
    ISSN: 0887-3585
    Keywords: α helix ; secondary structure ; gas phase ; molecular mechanics ; mass spectrometry ; kinetic energy release ; melittin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The stability of the α helix as an element of secondary structure is examined in the absence of solvation, in the gas phase. Mass-analyzed ion kinetic energy (MIKE) spectrometry was applied to measure intercharge repulsion and intercharge distance in multiply protonated melittin, a polypeptide known to possess a stable helical structure in a number of different environments. The experimental results, interpreted in combination with molecular mechanics calculations, suggest that triply charged melittin retains its secondary structure in the gas phase. The stability if the α-helical conformation of the polypeptide in the absence of solvent molecules reflects the fact that a network of intrinsic helical hydrogen bonds is energetically more favorable than unfolded conformations. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 149
    ISSN: 0887-3585
    Keywords: aspartic protease ; HIV-1 ; complex with inhibitor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The structure of a complex between a hexapeptide-based inhibitor, MVT-101, and the chemically synthesized (Aba 67,95,167,195; Aba: l-α-amino-n-butyric acid) protease from the human immunodeficiency virus (HIV-1), reported previously at 2.3 Å has now been refined to a crystallographic R factor of 15.4% at 2.0 Å resolution. Root mean square deviations from ideality are 0.18 Å for bond lengths and 2.4° for the angles. The inhibitor can be fitted to the difference electron density map in two alternative orientations. Drastic differences are observed for positions and interactions at P3/S3 and P3′/S3′ subsites of the two orientations due to different crystallographic environments. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 195-203 
    ISSN: 0887-3585
    Keywords: aspartic protease ; HIV-1 ; molecular dynamics ; molecular modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Six models of the catalytic site of HIV-1 protease complexed with a reduced peptide inhibitor, MVT-101, were investigated. These studies focused on the details of protonation of the active site, its total net charge and hydrogen bonding pattern, which was consistent with both the observed coplanar configuration of the acidic groups of the catalytic aspartates (Asp-25 and Asp-125) and the observed binding mode of the inhibitor. Molecular dynamic simulations using AMBER 4.0 indicated that the active site should be neutral. The planarity of the aspartate dyad may be due to the formation of two hydrogen bonds: one between the inner Oδ1oxygen atoms of the two catalytic aspartates and another between the Oδ2atom of Asp-125 and the nitrogen atom of the reduced peptide bond of the bound inhibitor. This would require two additional protonations, either of both aspartates, or of one Asp and the amido nitrogen atom of Nle-204. Our results favor the Asp-inhibitor protonation but the other one is not excluded. Implications of these findings for the mechanism of enzymatic catalysis are discussed. Dynamic properties of the hydrogen bond network in the active site and an analysis of the interaction energy between the inhibitor and the protease are presented. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 210-212 
    ISSN: 0887-3585
    Keywords: rab7 ; crystal ; GDP ; GTP ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The GTP/GDP conformational switch of members of the rab family of ras-related GTP-ases control specific intracellular vesicle transport pathways. We report the crystallization of the late-endosomal rab protein rab7, in both GTP and GDP conformations. X-ray data from crystals of rab71-207GppNHp (i.e., intact rab7, without C-terminal bound lipid, complexed with a non-hydrolysable GTP analog), rab71-197GppNHp and rab71-197GDP were collected to 1.9Å (0°C), 1.76Å (100°K) and 1.75Å (100°K) respectively. Rab7-GDP crystals diffract to at least 1.35Å. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 227-233 
    ISSN: 0887-3585
    Keywords: peptide conformation ; ramachandran plot ; PDB search ; peptide dynamics ; BPTI ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A simple method is presented for projecting the conformation of extended secondary structure elements of peptides and proteins that extend over four Cαatoms onto a simple two-dimensional surface. A new set of two degrees of freedom is defined, a pseudo-dihedral involving four sequential Cαatoms, as well as the triple scalar product for the vectors describing the orientation of the three intervening peptide groups. The method provides a reduction in dimensionality, from the usual combination of multiple φ,ψ pairs to a single pair, yielding valuable information concerning the structure and dynamics of these important elements. The new two-dimensional surface is explored by reference to 63 selected protein crystal structures together with a comparison of model built peptides representing the common secondary structural elements. Dynamical aspects on this new surface are examined using a molecular dynamics trajectory of Basic Pancreatic Trypsin Inhibitor. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 235-248 
    ISSN: 0887-3585
    Keywords: acarviosinide ; active site ; docking ; glucoamylase ; molecular mechanics ; monosaccharides ; simulated annealing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Glucoamylase is an important industrial glucohydrolase with a large specificity range. To investigate its interaction with the monosaccharides D-glucose, D-mannose, and D-galactose and with the substrate analogues 1-deoxynojirimycin, D-glucono-1,5-lactone, and methyl αacarviosinide, MM3(92)-optimized structures were docked into its active site using AutoDock 2.1. The results were compared to structures of glucoamylase complexes obtained by protein crystallography. Charged forms of some substrate analogues were also docked to assess the degree of protonation possessed by glucoamylase inhibitors. Many forms of methyl αa-carviosinide were conformationally mapped by using MM3(92), characterizing the conformational pH dependence found for the acarbose family of glucosidase inhibitors. Their significant conformers, representing the most common states of the inhibitor, were used as initial structures for docking. This constitutes a new approach for the exploration of binding modes of carbohydrate chains. Docking results differ slightly from x-ray crystallographic data, the difference being of the order of the crystallographic error. The estimated energetic interactions, even though agreeing in some cases with experimental binding kinetics, are only qualitative due to the large approximations made by AudoDock force field. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 279-289 
    ISSN: 0887-3585
    Keywords: protein structure prediction ; prediction contest ; protein sequence alignment ; compensatory covariation ; CASP2 ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A secondary structure has been predicted for the C termini of the fibrinogen β and γ chains from an aligned set of homologous protein sequences using a transparent method that extracts conformational information from patters of variation and conservation, parsing strings, and patterns of amphiphilicity. The structure is modeled to form two domains, the first having a core parallel sheet flanked on one side by at least two helices and on the other by an antiparallel amphiphilic sheet, with an additional helix connecting the two sheets. The second domain is built entirely from β strands. © 1997 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 290-308 
    ISSN: 0887-3585
    Keywords: protein folding ; protein structure ; supersecondary structure ; structure prediction ; turn prediction ; statistical potentials ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A simple method for predicting the location of surface loops/turns that change the overall direction of the chain that is, “U” turns, and assigning the dominant secondary structure of the intervening transglobular blocks in small, single-domain globular proteins has been developed. Since the emphasis of the method is on the prediction of the major topological elements that comprise the global structure of the protein rather than on a detailed local secondary structure description, this approach is complementary to standard secondary structure prediction schemes. Consequently, it may be useful in the early stages of tertiary structure prediction when establishment of the structural class and possible folding topologies is of interest. Application to a set of small proteins of known structure indicates a high level of accuracy. The prediction of the approximate location of the surface turns/loops that are responsible for the change in overall chain direction is correct in more than 95% of the cases. The accuracy for the dominant secondary structure assignment for the linear blocks between such surface turns/loops is in the range of 82%. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 311-314 
    ISSN: 0887-3585
    Keywords: thermostability ; cubic ; trypsin-agarose/sepharose chromatography vapor diffusion method ; self-rotation function ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Crystals of lima bean trypsin inhibitor (LBTI) were obtained by using the vapor phase equilibration technique with sodium/potassium tartrate as the precipitating agent. The space group was determined to be cubic, I213 with a= 110.2 Å. These crystals diffract to about 1.9 Å resolution. Preliminary analysis of self-rotation maps (calculated from native x-ray intensity data) suggests the presence of two monomers in the asymmetric unit. LBTI is very thermostable and retains activity even after boiling for 10 minutes. This property is exploited as part of its purification procedure. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 315-318 
    ISSN: 0887-3585
    Keywords: catalytic domain ; cross-linking ; hanging drop ; p21 ; seeding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Ras-GTPase-activating proteins (Ras-GAPs) are important regulators of the biological activity of Ras within the framework of intracellular communication where GTP-bound Ras (Ras: GTP) is a key signal transducing molecule (Trahey and McCormick, Science 238:542-545, 1987; Boguski and McCormick, Nature 366:643-654, 1993). By accelerating Ras-mediated GTP hydrolysis, Ras-GAPs provide an efficient means to reset the Ras-GTPase cycle to the GDP-bound “OFF”-state and terminate the Ras-mediated signal. Here we report the crystallization of the GTPase-activating domain of the human p120GAP. The crystals belong to the orthorhombic space group symmetry P212121with unit cell dimensions of a = 42.2 Å, b = 55.6 Å, c = 142.2 Å, α = β = γ = 90°. Assuming a Matthews parameter of 2.2 Å3/Da, there is one molecule per asymmetric unit. Applying micro-seeding techniques, we grew large single crystals that could not be obtained by other routine methods for crystal improvement. They diffracted to a resolution of approximately 3 Å using X-rays from a rotating anode generator and to better than 1.8 Å in a synchrotron beam. Chemical cross-linking led to reduction of the maximum resolution but to significantly increased stability against mechanical and heavy atom stress. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 325-327 
    ISSN: 0887-3585
    Keywords: transcriptional control ; cell-cycle ; DNA-binding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A 124-residue N-terminal fragment corresponding to the DNA-binding domain of the Saccharomyces cerevisae cell-cycle transcription factor MBP-1 has been expressed with a hexahistidine affinity tag in E. coli and purified to apparent homogeneity. Crystals have been grown using PEG 3350 as precipitant which diffract x-rays to greater than 2.6 Å resolution. The space group is tetragonal, P43212 or P41212 with unit cell dimensions a= b= 42.2 Å, c= 123.2 Å and a monomer in the asymmetric unit. © 1997 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 159
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 329-335 
    ISSN: 0887-3585
    Keywords: protein structure ; protein sequence analysis ; hydrogen bonds ; sequence alignment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In this study we present an accurate secondary structure prediction procedure by using a query and related sequences. The most novel aspect of our approach is its reliance on local pairwise alignment of the sequence to be predicted with each related sequence rather than utilization of a multiple alignment. The residue-by-residue accuracy of the method is 75% in three structural states after jack-knife tests. The gain in prediction accuracy compared with the existing techniques, which are at best 72%, is achieved by secondary structure propensities based on both local and long-range effects, utilization of similar sequence information in the form of carefully selected pairwise alignment fragments, and reliance on a large collection of known protein primary structures. The method is especially appropriate for large-scale sequence analysis efforts such as genome characterization, where precise and significant multiple sequence alignments are not available or achievable. Proteins 27:329-335, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 160
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 29-40 
    ISSN: 0887-3585
    Keywords: molecular evolution ; nicotinamide adenine dinucleotide ; nicotinamide adenine dinucleotide phosphate ; dinucleotide bonding domains ; mononucleotide binding domains ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Nicotinamide adenine dinucleotides [NAD and NADP with both referred to as NAD(P)] are among the more diffuse redox cofactors. Despite their stereochemical similarity where the only difference is a phosphomonoester on the ribose near the adenine of NADP, they show different biochemical reactivities with NAD behaving as an oxidant and NADP as a reductant. NAD(P)-dependent enzymes generally share a common open α/β fold with few exceptions only recently structurally characterized. This study of the molecular evolution of the NAD(P) binding domains, possible given the large number of known molecular structures, addresses two main questions: 1) can a common fold exist in different biological systems (divergent evolution) and 2) does a relationship exist among similar biological systems that display different folds (convergent evolution)? Both the structures of mono- and dinucleotide binding domains have been classified by cluster analysis based on the similarity evaluated by their main chain Cα superposition. Moreover, the cofactor conformations and the stereochemical characteristics of their pockets have also been classified by analogous methods on the basis of the published tertiary structures. Two primary results appear: 1) the classification of the mononucleotide binding domains is different from that of the dinucleotide binding folds and 2) both divergent and convergent evolutionary pathways can be hypothesized, the latter less frequently observed and less pronounced but nevertheless evident. The generally accepted hypothesis that dinucleotide binding domains have evolved by gene duplication of primordial genes coding for the smaller mononucleotide binding domains is acceptable but the two halves of the resulting dinucleotide binding domains are evolutionarly uncorrelated. The NH2-terminal mononucleotide binding domain is less variable than the COOH-terminal half, probably because it involves the binding of the ADP moiety of NAD(P) invariant in all examined systems. There is evidence to postulate that evolutionary pathways for NAD(P)-dependent enzymes are both divergent and convergent. In fact, nearly all combinations of similarity/dissimilarity in overall fold, cofactor conformation, and cofactor binding pocket structural characteristics for each enzyme pair examined are possible. The NAD(P)-dependent enzymes apparently provide a canonical example of an evolutionary principle that “anything goes.” © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 83-93 
    ISSN: 0887-3585
    Keywords: helical conformations ; polypeptides ; homopeptides ; apolar solvents ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The stability between helical conformations of homopeptides of alanine, glycine, and aminoisobutyric acid has been studied by means of quantum-mechanical methods. The influence of peptide length on the relative stability between helical conformations has also been analyzed by means of systematic studies for peptides of size up to 11 residues. Finally, the influence of the solvent has been examined by using self-consistent reaction field methods. The results provide a detailed picture of the modulation exerted by these factors on the helical preferences of these peptides. © 1997 Wiley-Liss Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 72-82 
    ISSN: 0887-3585
    Keywords: protein family analysis ; genome analysis ; homology modeling ; molecular evolution ; protein structure comparison ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The recent determination of the three-dimensional structure of urease revealed striking similarities of enzyme architecture to adenosine deaminase and phosphotriesterase, evidence of a distant evolutionary relationship that had gone undetected by one-dimensional sequence comparisons. Here, based on an analysis of conservation patterns in three dimensions, we report the discovery of the same active-site architecture in an even larger set of enzymes involved primarily in nucleotide metabolism. As a consequence, we predict the three-dimensional fold and details of the active site architecture for dihydroorotases, allantoinases, hydantoinases, AMP-, adenine and cytosine deaminases, imidazolonepropionase, aryldialkylphosphatase, chlorohydrolases, formylmethanofuran dehydrogenases, and proteins involved in animal neuronal development. Two member families are common to archaea, eubacteria, and eukaryota. Thirteen other functions supported by the same structural motif and conserved chemical mechanism apparently represent later adaptations for different substrate specificities in different cellular contexts. © 1997 Wiley-Liss Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 163
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 109-116 
    ISSN: 0887-3585
    Keywords: normal mode analysis ; Delauney tessellation ; bond distance ; compressibility ; volume fluctuation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The mechanical response of a TIM-barrel protein to an applied pressure has been studied. We generated structures under an applied pressure by assuming the volume change to be a linear function of normal mode variables. By Delaunay tessellation, the space occupied by protein atoms is divided uniquely into tetrahedra, whose four vertices correspond to atomic positions. Based on the atoms that define them, the resulting Delaunay tetrahedra are classified as belonging to various secondary structures in the protein. The compressibility of various regions identified with respect to secondary structural elements in this protein is obtained from volume changes of respective regions in two structures with and without an applied pressure. We found that the β barrel region located at the core of the protein is quite soft. The interior of the β barrel, occupied by side chains of β strands, is the softest. The helix, strand, and loop segments themselves are extremely rigid, while the regions existing between these secondary structural elements are soft. These results suggest that the regions between secondary structural elements play an important role in protein dynamics. Another aspect of tetrahedra, referred to as bond distance, is introduced to account for rigidities of the tetrahedra. Bond distance is a measure of separation of the atoms of a tetrahedron in terms of number of bonds along the polypeptide chain or side chains. Tetrahedra with longer bond distances are found to be softer on average. From this behavior, we derive a simple empirical equation, which well describes the compressibilities of various regions. © 1997 Wiley-Liss Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 164
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 140-140 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 461-462 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 166
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 32-58 
    ISSN: 0887-3585
    Keywords: computer-aided ligand design ; multiple copy simultaneous search ; poliovirus ; rhinovirus ; structure-based drug design ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A combinatorial ligand design approach based on the multiple copy simultaneous search (MCSS) method and a simple scheme for joining MCSS functional group sites was applied to the binding pocket of P3/Sabin poliovirus and rhinovirus 14. The MCSS method determines where specific functional (chemical) groups have local potential energy minima in the binding site. Before the virus application, test calculations were run to determine the optimal set of input parameters to be used in evaluating the MCSS results. The MCSS minima are analyzed and selected minima are connected with (CH2)n linkers to form candidate ligands, whose structures are optimized in the binding site. Estimates of the binding strength were made for the ligands and compared with those for known drugs. The results indicate that the proposed ligands should bind to P3/Sabin poliovirus at least as well as the best of the existing drugs, and that they should also bind to P1/Mahoney poliovirus and rhinovirus 14. A detailed comparison of the poliovirus and rhinovirus binding pockets and an analysis of drug binding specificity is presented. Proteins 29:32-58, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 167
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 15-31 
    ISSN: 0887-3585
    Keywords: metalloprotein ; lipoxygenase ; X-ray structure ; fatty acid ; electron transfer ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Soybean lipoxygenase isoenzyme L3 represents a second example (after L1) of the X-ray structure (R = 17% at 2.6 Å resolution) for a member of the large family of lipoxygenases. L1 and L3 have different characteristics in catalysis, although they share 72% sequence identity (the changes impact 255 amino acids) and similar folding (average Cα rms deviation of 1 Å). The critical nonheme iron site has the same features as for L1: 3O and 3N in pseudo C3v orientation, with two oxygen atoms (from Asn713 and water) at a nonbinding distance. Asn713 and His518 are strategically located at the junction of three cavities connecting the iron site with the molecule surface. The most visible differences between L1 and L3 isoenzymes occur in and near these cavities, affecting their accessibility and volume. Among the L1/L3 substitutions Glu256/Thr274, Tyr409/His429, and Ser747/Asp766 affect the salt bridges (L1: Glu256…His248 and Asp490…Arg707) that in L1 restrict the access to the iron site from two opposite directions. The L3 molecule has a passage going through the whole length of the helical domain, starting at the interface with the Nt-domain (near 25-27 and 254-278) and going to the opposite end of the Ct-domain (near 367, 749). The substrate binding and the role of His513, His266, His776 (and other residues nearby) are illustrated and discussed by using models of linoleic acid binding. These hypotheses provide a possible explanation for a stringent stereospecificity of catalytic products in L1 (that produces predominantly 13-hydroperoxide) versus the lack of such specificity in L3 (that turns out a mixture of 9- and 13-hydroperoxides and their diastereoisomers). Proteins 29:15-31, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 168
    ISSN: 0887-3585
    Keywords: species-specificity ; DOCK ; molecular docking ; lead discovery ; antifungal ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Specificity is an important aspect of structure-based drug design. Distinguishing between related targets in different organisms is often the key to therapeutic success. Pneumocystis carinii is a fungal opportunist which causes a crippling pneumonia in immunocompromised individuals. We report the identification of novel inhibitors of P. cariniidihydrofolate reductase (DHFR) that are selective versus inhibition of human DHFR using computational molecular docking techniques. The Fine Chemicals Directory, a database of commercially available compounds, was screened with the DOCK program suite to produce a list of potential P. carinii DHFR inhibitors. We then used a postdocking refinement directed at discerning subtle structural and chemical features that might reflect species specificity. Of 40 compounds predicted to exhibit anti-PneumocystisDHFR activity, each of novel chemical framework, 13 (33%) show IC50 values better than 150 μM in an enzyme assay. These inhibitors were further assayed against human DHFR: 10 of the 13 (77%) bind preferentially to the fungal enzyme. The most potent compound identified is a 7 μM inhibitor of P. carinii DHFR with 25-fold selectivity. The ability of molecular docking methods to locate selective inhibitors reinforces our view of structure-based drug discovery as a valuable strategy, not only for identifying lead compounds, but also for addressing receptor specificity. Proteins 29:59-67, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 169
    ISSN: 0887-3585
    Keywords: piezostability ; thermostability ; hydrostatic pressure ; circular dichroism ; Fourier transform infrared spectroscopy ; nuclear magnetic resonance ; site-directed mutagenesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: This study reports the characterization of the recombinant 7-kDa protein P2 from Sulfolobus solfataricus and the mutants F31A and F31Y with respect to temperature and pressure stability. As observed in the NMR, FTIR, and CD spectra, wild-type protein and mutants showed substantially similar structures under ambient conditions. However, midpoint transition temperatures of the denaturation process were 361, 334, and 347 K for wild type, F31A, and F31Y mutants, respectively: thus, alanine substitution of phenylalanine destabilized the protein by as much as 27 K. Midpoint transition pressures for wild type and F31Y mutant could not be accurately determined because they lay either beyond (wild type) or close to (F31Y) 14 kbar, a pressure at which water undergoes a phase transition. However, a midpoint transition pressure of 4 kbar could be determined for the F31A mutant, implying a shift in transition of at least 10 kbar. The pressure-induced denaturation was fully reversible; in contrast, thermal denaturation of wild type and mutants was only partially reversible. To our knowledge, both the pressure resistance of protein P2 and the dramatic pressure and temperature destabilization of the F31A mutant are unprecedented. These properties may be largely accounted for by the role of an aromatic cluster where Phe31 is found at the core, because interactions among aromatics are believed to be almost pressure insensitive; furthermore, the alanine substitution of phenylalanine should create a cavity with increased compressibility and flexibility, which also involves an impaired pressure and temperature resistance. Proteins 29:381-390, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 170
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 426-432 
    ISSN: 0887-3585
    Keywords: overdamped langevin dynamics ; thermal motion ; neurotrophin ; glutamine synthetase ; atomic displacement parameter ; x-ray diffraction data ; loop mobility ; disorder ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In the course of refining atomic protein structures, one often encounters difficulty with molecules that are unusually flexible or otherwise disordered. We approach the problem by combining two relatively recent developments: simultaneous refinement of multiple protein conformations and highly constrained refinement. A constrained Langevin dynamics refinement is tested on two proteins: neurotrophin-3 and glutamine synthetase. The method produces closer agreement between the calculated and observed scattering amplitudes than standard, single-copy, Gaussian atomic displacement parameter refinement. This is accomplished without significantly increasing the number of fitting parameters in the model. These results suggest that loop motion in proteins within a crystal lattice can be extensive and that it is poorly modeled by isotropic Gaussian distributions for each atom. Proteins 29:426-432, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 171
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 417-425 
    ISSN: 0887-3585
    Keywords: nonlinear dynamics ; chaotic motion in complex systems ; protein folding pathways ; molecular dynamics ; Lyapunov exponent ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: MD simulations, currently the most detailed description of the dynamic evolution of proteins, are based on the repeated solution of a set of differential equations implementing Newton's second law. Many such systems are known to exhibit chaotic behavior, i.e., very small changes in initial conditions are amplified exponentially and lead to vastly different, inherently unpredictable behavior. We have investigated the response of a protein fragment in an explicit solvent environment to very small perturbations of the atomic positions (10-3-10-9 Å). Independent of the starting conformation (native-like, compact, extended), perturbed dynamics trajectories deviated rapidly, leading to conformations that differ by approximately 1 Å RMSD within 1-2 ps. Furthermore, introducing the perturbation more than 1-2 ps before a significant conformational transition leads to a loss of the transition in the perturbed trajectories. We present evidence that the observed chaotic behavior reflects physical properties of the system rather than numerical instabilities of the calculation and discuss the implications for models of protein folding and the use of MD as a tool to analyze protein folding pathways. Proteins 29:417-425, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 172
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 401-416 
    ISSN: 0887-3585
    Keywords: nucleophilic substitution at phosphorus ; associative mechanisms ; dissociative mechanisms ; transition-state structures ; Staphylococcal nuclease ; protein kinases ; tyrosine kinases ; G proteins ; F1 ATPase ; myosin ATPase ; phosphoserine-phosphothreonine protein phosphatases ; phosphotyrosine protein phosphatases ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Most enzymes involved in cell signaling, such as protein kinases, protein phosphatases, GTPases, and nucleotide cyclases catalyze nucleophilic substitutions at phosphorus. When possible, the mechanisms of such enzymes are most clearly described quantitatively in terms of how associative or dissociative they are. The mechanisms of cell signaling enzymes range from ≤8% associative (cAMP-dependent protein kinase) to ≈50% associative (G protein Giα1). Their catalytic powers range from 105.7 (p21ras) to 1011.7 (λ Ser-Thr protein phosphatase), usually comparable in magnitude with those of nonsignaling enzymes of the same mechanistic class. Exceptions are G proteins, which are 103- to 105-fold poorer catalysts than F1 and myosin ATPases. The lower catalytic powers of G proteins may be ascribed to the absence of general base catalysis, and additionally in the case of p21ras, to the absence of a catalytic Arg residue, which interacts with the transition state. From kinetic studies of mutant and metal ion substituted enzymes, the catalytic powers of cell signaling and related enzymes can be rationalized quantitatively by factors contributed by metal ion catalysis (≥105), general acid catalysis (≈103±1), general base catalysis (≈103±1), and transition-state stabilization by cationic and hydrogen bond donating residues (≈103±1). Proteins 29:401-416, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 173
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 391-398 
    ISSN: 0887-3585
    Keywords: neural networks ; automatic predictions ; RAMAN spectroscopy ; IR spectroscopy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A consensus prediction for the secondary structure of the muscle nicotinic acetylcholine receptor (α, β, γ, and δ subunits) extracellular regions is presented. This protein is a member of the ligand-gated ion channel superfamily, which also encompasses the 5HT3, GABAA, and glycine receptors. The strategy used here is based on the application of six different prediction methods to an alignment of 118 sequences of this superfamily. A consensus prediction was finally produced for each of the four different subunits of the muscle nicotinic receptor nonmembrane regions. The predicted percentages, with respect to the total receptor length, and averaged for the four subunits are as follows: α-helix 29.7%, β-sheet 24.9%, and turn+coil 21.7%. When adding to these values the estimations of the secondary structure reported for the transmembrane region only, the results are in agreement with those obtained experimentally by Yager et al.1 and Méthot et al.2 The deviations with respect to these experimental estimations are α-helix +2.8%, β-sheet -4/-5% and turn+coil +3/+2%, respectively. Considering the predictions made for individual subunits, the best approximation was obtained for the α subunit, with deviations of -0.2% for α-helix, -2.5/-1.5% for β-sheet, and +0.9/+1.9% for turn+coil. The prediction was used to infer the residues involved in forming three helices that presumably flank the ligand-binding pocket and to propose mechanism for transferring the information of the ligand binding to the ion channel. Proteins 29:391-398, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 174
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 38-42 
    ISSN: 0887-3585
    Keywords: distance geometry ; homology modeling ; fold recognition ; protein structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The application of homology modeling is often limited by the lack of known structures with sufficiently high sequence similarity to the target protein. The recent development of threading methods now enable the identification of likely folding patterns in a number of cases where the structural relatedness between target and template(s) is not detectable at the sequence level. We devised a hybrid method in which fold recognition was performed using the Multiple Sequence Threading (MST) method. The structural equivalences deduced from the threading output were used to guide the distance geometry program DRAGON in the construction of low-resolution Cα/Cβ models. The initial structures were converted to full-atom representation and refined using the general-purpose molecular modeling package QUANTA. The performance of the approach is illustrated on the CASP2 target T0004 (polyribonucleotide nucleotidyltransferase S1 motif (PNS1) from Escherichia coli, PDB code: 1SRO) for which no obvious homologues with known structure were available. The correct fold of PNS1 was successfully identified, and the model was found to be more similar to the experimental PNS1 structure than the scaffold (Cα RMSD of 6.2 Å compared with 6.4 Å). Our results indicate that a sensitive fold recognition algorithm coupled with a distance geometry program capable of rapidly generating initial structures can successfully complement high-resolution homology modeling methods in cases where sequential similarity is low. Proteins, Suppl. 1:38-42, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 175
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 461-466 
    ISSN: 0887-3585
    Keywords: protein folding ; molecular evolution ; lattice models ; fitness landscapes ; neutral networks ; spin-glass theory ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We model the evolution of simple lattice proteins as a random walk in a fitness landscape, where the fitness represents the ability of the protein to fold. At higher selective pressure, the evolutionary trajectories are confined to neutral networks where the native structure is conserved and the dynamics are non self-averaging and nonexponential. The optimizability of the corresponding native structure has a strong effect on the size of these neutral networks and thus on the nature of the evolutionary process. Proteins 29:461-466, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 176
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 83-91 
    ISSN: 0887-3585
    Keywords: fold recognition ; protein threading ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Analysis of CASP2 protein threading results shows that the success rate of structure predictions varies widely among prediction targets. We set “critical” thresholds in fold recognition specificity and threading model accuracy at the points where “incorrect” CASP2 predictions just outnumber “correct” predictions. Using these thresholds we find that correct predictions were made for all of those targets and for only those targets where more than 50% of target residues may be superimposed on previously known structures. Three-fourths of these correct predictions were furthermore made for targets with greater than 12% residue identity in structural alignment, where characteristic sequence motifs are also present. Based on these observations we suggest that the sustained performance of threading methods is best characterized by counting the numbers of correct predictions for targets of increasing “difficulty.” We suggest that target difficulty may be assigned, once the true structure of the target is known, according to the fraction of residues superimposable onto previously known structures and the fraction of identical residues in those structural alignments. Proteins, Suppl. 1:83-91, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 177
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 105-112 
    ISSN: 0887-3585
    Keywords: CASP ; fold recognition ; SCOP ; superfamily ; structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Protein structure prediction is arguably the biggest unsolved problem of structural biology. The notion of the number of naturally occurring different protein folds being limited allows partial solution of this problem by the use of fold recognition methods, which “thread” the sequence in question through a library of known protein folds. The fold recognition methods were thought to be superior to the distant homology recognition methods when there is no significant sequence similarity to known structures. We show here that the Structural Classification of Proteins (SCOP) database, organizing all known protein folds according their structural and evolutionary relationships, can be effectively used to enhance the sensitivity of the distant homology recognition methods to rival the “threading” methods. In the CASP2 experiment, our approach correctly assigned into existing SCOP superfamilies all of the six “fold recognition” targets we attempted. For each of the six targets, we correctly predicted the homologous protein with a very similar structure; often, it was the most similar structure. We correctly predicted local alignments of the sequence features that we found to be characteristic for the protein superfamily containing a given target. Our global alignments, extended manually from these local alignments, also appeared to be rather accurate. Proteins, Suppl. 1:105-112, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 178
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 129-133 
    ISSN: 0887-3585
    Keywords: knowledge-based potentials ; energy functions ; molecular modeling ; prediction of protein structure ; prediction evaluation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We submitted nine predictions to CASP2 using our fold recognition program ProFIT. Two of these structures were still unsolved by the end of the experiment, six had a recognizable fold, and one fold was new. Four predictions of the six recognizable folds were correct. Two models were excellent in terms of alignment quality (T0031, T0004): in one the alignment was partially correct (T0014), and one fold was correctly identified (T0038). We discuss improvements of the program and analyze the prediction results. Proteins, Suppl. 1:129-133, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 151-166 
    ISSN: 0887-3585
    Keywords: protein structure prediction ; assessment of models ; CASP ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Submissions in the ab initio category included predictions of secondary structure, three-dimensional coordinate sets, modes of oligomerization, and residue and secondary structure segment contact patterns. For secondary structure prediction, four groups showed sustained success according the the criterion Q3 ≥ 68 (Q3 = % of residues correctly assigned to the categories helix, strand, and other). The best program, Rost's PHD, scored over this threshold in 13 of its 16 assessable attempts. For the prediction of full three-dimensional coordinates, no group could claim sustained success in prediction of generally correct structures over a range of targets. However, satisfactory predictions were achieved in one case, pig NK-lysin (target 42), a 78-residue protein with three disulfide bridges. For the prediction of contacts, Olmea, Pazos, and Valencia have developed specialized methods for residue-residue proximity patterns, and Gerloff, Joachimiak, Cohen, and Benner for segment contacts. Proteins, Suppl. 1:151-166, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 179-184 
    ISSN: 0887-3585
    Keywords: genetic algorithms ; torsion space Monte Carlo ; potential of mean force ; arginine repressor ; protein g3p ; NK-lysin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Ab-initio folding simulations have been performed on three small proteins using a genetic algorithm- (GA-) based search method which operates on an all atom representation. Simulations were also performed on a number of small peptides expected to be inde pendent folding units. The present genetic algorithm incorporates the results of developments made to the method first tested in CASP1. Additional operators have been introduced into the search in order to allow the simulation of longer sequences and to avoid premature free energy convergence. Secondary structure information derived from a consensus of eight methods and Monte Carlo simulations on sets of homologous sequences has been used to bias the starting populations used in the GA simulations. For the fragment simulations, the results generally have approximately correct local structure, but tend to be too compact, leading to poor RMS error values. One of the three small protein structures has the topology and most of the general organization correct, although many of the details are incorrect. Proteins, Suppl. 1:179-184, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. i 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 182
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 26-35 
    ISSN: 0887-3585
    Keywords: streptokinase variants ; Streptococcus equisimilis ; Streptococcus pyogenes ; circular dichroism ; fluorescence spectroscopy ; differential scanning calorimetry ; limited proteolysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Conformation and stability of three Sks from Streptococcus equisimilis strain H46A, Streptococcus pyogenes strain A374, and Streptococcus pyogenes strain AT27 were compared by limited proteolysis, CD, and fluorescence measurements and by DSC. The general similarity of the peptide CD spectra in the spectral region 185 to 260 nm indicates the same type of folding for the three proteins. Fluorescence and aromatic CD spectra are consistent with a predominant surface localization of the aromatic amino acids and a low rigidity of their surroundings. A major difference among the three Sks is shown by deconvolution of their excessive heat capacity functions. Deconvolution reveals two energetic folding units in Sk H46A but three energetic folding units in Sk A374 and Sk AT27. Digestion of the Sks with trypsin indicates a reduced sensitivity of the C-terminal region of Sk A374 and Sk AT27 in comparison to Sk H46A. This suggests that amino acids of the C-terminal region participate in the formation of the third folding unit of Sk A374 and Sk AT27. Proteins 27:26-35 © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 183
    ISSN: 0887-3585
    Keywords: β-lactamase ; homology-modeling ; carbapenems ; disulfide bridge ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Bacterial resistance to β-lactam antibiotics, a clinically worrying and recurrent problem, is often due to the production of β-lactamases, enzymes that efficiently hydrolyze the amide bond of the β-lactam nucleus. Imipenem and other carbapenems escape the activity of most active site serine β-lactamases and have therefore become very popular drugs for antibacterial chemotherapy in the hospital environment. Their usefulness is, however, threatened by the appearance of new β-lactamases that efficiently hydrolyze them. This study is focused on the structure and properties of two recently described class A carbapenemases, produced by Serratia marcescens and Enterobacter cloacae strains and leads to a better understanding of the specificity of β-lactamases. In turn, this will contribute to the design of better antibacterial drugs. Three-dimensional models of the two class A carbapenemases were constructed by homology modeling. They suggested the presence, near the active site of the enzymes, of a disulfide bridge (C69-C238) whose existence was experimentally confirmed. Kinetic parameters were measured with the purified Sme-1 carbapenemase, and an attempt was made to explain its specific substrate profile by analyzing the structures of minimized Henri-Michaelis complexes and comparing them to those obtained for the “classical” TEM-1 β-lactamase. The peculiar substrate profile of the carbapenemases appears to be strongly correlated with the presence of the disulfide bridge between C69 and C238. Proteins 27:47-58 © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 184
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 80-95 
    ISSN: 0887-3585
    Keywords: ribosome-inactivating proteins ; N-glycosidase ; protein-RNA interactions ; molecular recognition ; simulated annealing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Ricin A-chain is a cytotoxic protein that attacks ribosomes by hydrolyzing a specific adenine base from a highly conserved, single-stranded rRNA hairpin containing the tetraloop sequence GAGA. Molecular-dynamics simulation methods are used to analyze the structural determinant for three substrate analogues bound to the ricin A-chain molecule. Simulations were applied to the binding of the dinucleotide adenyl-3′,5′-guanosine employing the x-ray crystal structure of the ricin complex and a modeled CGAGAG hexanucleotide loop taken from the NMR solution structure of a 29-mer oligonucleotide hairpin. A third simulation model is also presented describing a conformational search of the docked 29-mer structure by using a simulated-annealing method. Analysis of the structural interaction energies for each model shows the overall binding dominated by nonspecific interactions, which are mediated by specific arginine contacts from the highly basic region on the protein surface. The tetraloop conformation of the 29-mer was found to make specific interactions with conserved protein residues, in a manner that favored the GAGA sequence. A comparison of the two docked loop conformations with the NMR structure revealed significant positional deviations, suggesting that ricin may use an induced fit mechanism to recognize and bind the rRNA substrate. The conserved Tyr-80 may play an important confirmational entropic role in the binding and release of the target adenine in the active site. Proteins 27:80-95 © 1997 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 185
    ISSN: 0887-3585
    Keywords: small-angle scattering ; x-rays ; allosteric enzymes ; crystal structure ; rigid body modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Solution scattering curves evaluated from the crystal structures of the T and R states of the allosteric enzyme aspartate transcarbamylase from Escherichia coli were compared with the experimental x-ray scattering patterns. Whereas the scattering from the crystal structure of the T state agrees with the experiment, large deviations reflecting a significant difference between the quaternary structures in the crystal and in solution are observed for the R state. The experimental curve of the R state was fitted by rigid body movements of the subunits in the crystal R structure which displace the latter further away from the T structure along the reaction coordinates of the T→R transition observed in the crystals. Taking the crystal R structure as a reference, it was found that in solution the distance between the catalytic trimers along the threefold axis is 0.34 nm larger and the trimers are rotated by 11° in opposite directions around the same axis; each of the three regulatory dimers is rotated by 9° around the corresponding twofold axis and displaced by 0.14 nm away from the molecular center along this axis. Proteins 27:110-117 © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 186
    ISSN: 0887-3585
    Keywords: dimeric bacterial hemoglobin ; Vitreoscilla stercoraria ; crystal growth ; x-ray diffraction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The recombinant homodimeric hemoglobin from the strictly aerobe gram-negative bacterium Vitreoscilla stercoraria has been expressed in Escherichia coli, purified to homogeneity, and crystallized by vapor diffusion techniques, using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P21 and diffract to HIGH resolution. The unit cell parameters are a = 62.9, b = 42.5, c = 63.2 Å, β = 106.6°; the asymmetric unit contains the homodimeric hemoglobin, with a volume solvent content of 42%. Proteins 27:154-156 © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 187
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 160-161 
    ISSN: 0887-3585
    Keywords: protein crystallization ; x-ray crystallography ; thrombolytic agents ; staphylokinase ; STAR ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Diffraction quality crystals of recombinant staphylokinase (STAR) have been grown by the hanging drop vapor diffusion technique from a solution containing MgCl2, Tris buffer (pH 8.5), and polyethylene glycol 4000. The crystals belong to the monoclinic space group C2 with unit cell dimensions a = 60.6 Å, b = 43.7 Å, c = 54.3 Å, and β = 115.6°. Å complete native data set to 1.8 Å resolution has been collected using synchrotron radiation. Proteins 27:160-161 © 1997 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 188
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 162-162 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 171-183 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The equilibrium folding pathway of staphylococcal nucleas (SNase) has been approximated using a statistical thermodynamic formalism that utilizes the high-resolution structure of the native state as a template to generate a large ensemble of partially folded states. Close to 400,000 different states ranging from the native to the completely unfolded states were included in the analysis. The probability of each state was estimated using an empirical structural parametrization of the folding energetics. It is shown that this formalism predicts accurately the stability of the protein, the cooperativity of the folding/unfolding transition observed by differential scanning calorimetry (DSC) or urea denaturation and the thermodynamic parameters for unfolding. More importantly, this formalism provides a quantitative account of the experimental hydrogen exchange protection factors measured under native conditions for SNase. These results suggest that the computer-generated distribution of states approximates well the ensemble of conformations existing in solution. Furthermore, this formalism represents the first model capable of quantitatively predicting within a unified framework the probability distribution of states seen under native conditions and its change upon unfolding. © 1997 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 190
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 204-209 
    ISSN: 0887-3585
    Keywords: rab7 ; GTPase ; vesicle ; targeting ; crystal ; kinetics ; NMR ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Rab proteins are a family of ˜25kD ras-related GTPases which are associated with distinct intracellular membranes where they control vesicle traffic between intracellular compartments. The late-endosomal rab protein rab71-207, (lacking only the C-terminal lipids of the native molecule) and three C-terminal truncated constructs rab71-202, rab71-197and rab71-182were purified using an E. coli expression system. The C-terminal tail region of rab proteins is of special interest because it is thought to target rab proteins to particular intracellular membranes. A comparison of TOCSY-NMR spectra from intact rab71-207and the tail-less construct rab71-182suggested that much of the C-terminal tail is flexible in solution. The GTP hydrolysis, and GDP association and dissociation rates for all the truncated and intact constructs were similar, showing that the tail region of rab71-207has little influence on the hydrolysis and exchange rates of the nucleotide. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 213-226 
    ISSN: 0887-3585
    Keywords: conformation space ; potential energy surface ; connectivity ; topological mapping ; family clustering ; principal coordinate projections ; visualization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Clustering molecular conformations into “families” is a common procedure in conformational analysis of molecular systems. An implicit assumption which often underlies this clustering approach is that the resulting geometric families reflect the energetic structure of the system's potential energy surface. In a broader context we address the question whether structural similarity is correlated with energy basins, i.e., whether conformations that belong to the same energy basin are also geometrically similar. “Topological mapping” and principal coordinate projections are used here to address this question and to assess the quality of the “family clustering” procedure. Applying the analysis to a small tetrapeptide it was found that the general correlation that exists between energy basins and structural similarity is not absolute. Clusters generated by the geometric “family clustering” procedure do not always reflect the underlying energy basins. In particular it was found that the “family tree” that is generated by the “family clustering” procedure is completely inconsistent with its real topological counterpart, the “disconnectivity” graph of this system. It is also demonstrated that principal coordinate analysis is a powerful visualization technique which, at least for this system, works better when distances are measured in dihedral angle space rather than in cartesian space. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 192
    ISSN: 0887-3585
    Keywords: tetrahydrofolate ; protein crystallization ; folate coenzymes ; purine synthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The monofunctional enzyme 10-formyltetrahydrofolate synthetase (THFS), which is responsible for the recruitment of single carbon units from the formate pool into a variety of folate-dependent biosynthetic pathways, has been subcloned, purified, and crystallized. The crystals belong to space group P21, with unit cell dimensions a= 102.4 Å b= 116.5 Å c= 115.8 Å and β = 103.5 Å. The crystal unit cell and diffraction is consistent with an asymmetric unit consisting of the enzyme tetramer, and a specific volume of the unit cell of 2.7 Å3/Da. The crystals diffract to at least 2.3 Å resolution after flash-cooling, when using a rotating anode x-ray source and an RAXIS image plate detector. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 193
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 249-271 
    ISSN: 0887-3585
    Keywords: protein structure ; secondary structure ; protein conformation ; protein backbone structure ; protein structure classification ; helix capping ; strand capping ; neural networks ; structural building blocks ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: To study local structures in proteins, we previously developed an autoassociative artificial neural network (autoANN) and clustering tool to discover intrinsic features of macromolecular structures. The hidden unit activations computed by the trained autoANN are a convenient low-dimensional encoding of the local protein backbone structure. Clustering these activation vectors results in a unique classification of protein local structural features called Structural Building Blocks (SBBs). Here we describe application of this method to a larger database of proteins, verification of the applicability of this method to structure classification, and subsequent analysis of amino acid frequencies and several commonly occurring patterns of SBBs. The SBB classification method has several interesting properties: 1) it identifies the regular secondary structures, α helix and β strand; 2) it consistently identifies other local structure features (e.g., helix caps and strand caps); 3) strong amino acid preferences are revealed at some positions in some SBBs; and 4) distinct patterns of SBBs occur in the “random coil” regions of proteins. Analysis of these patterns identifies interesting structural motifs in the protein backbone structure, indicating that SBBs can be used as “building blocks” in the analysis of protein structure. This type of pattern analysis should increase our understanding of the relationship between protein sequence and local structure, especially in the prediction of protein structures. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 194
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 309-310 
    ISSN: 0887-3585
    Keywords: crystals ; ribosomes ; extreme thermophile ; translation repressor ; x-ray analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Crystals have been obtained for recombinant ribosomal protein S8 from Thermus thermophilus produced by Escherichia coli. The protein crystals have been grown in 40 mM potassium phosphate buffer (pH 6.0) in hanging drops equilibrated against saturated ammonium sulfate (unbuffered) with 2-methyl-2,4-pentandiol (v/v). The crystals belong to the space group P41(3)212 with cell parameters a= b= 67.65 Å, c= 171.12 Å. They diffract x-rays to 2.9 Å resolution. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 367-384 
    ISSN: 0887-3585
    Keywords: protein folding ; force field ; structure prediction ; molecular dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present an unusual method for parametrizing low-resolution force fields of the type used for protein structure prediction. Force field parameters were-determined by assigning each a fictitious mass and using a quasi-molecular dynamics algorithm in parameter space. The quasi-energy term favored folded native structures and specifically penalized folded nonnative structures. The force field was generated after optimizing less than 70 adjustable parameters, but shows a strong ability to discriminate between native structures and compact misfolded-alternatives. The functional form of the force field was chosen as in molecular mechanics and is not table-driven. It is continuous with continuous derivatives and is thus suitable for use with algorithms such as energy minimization or newtonian dynamics. Proteins 27:367-384, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 395-404 
    ISSN: 0887-3585
    Keywords: hydration ; solvation ; protein-solvent interactions ; molecular dynamics ; computer simulation ; GROMOS ; SPC water ; radial distribution function ; solvent residence times ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The impact of an extensive, uniform and hydrophobic protein surface on the behavior of the surrounding solvent is investigated. In particular, focus is placed on the possible enhancement of the structure of water at the interface, one model for the hydrophobic effect. Solvent residence times and radial distribution functions are analyzed around three types of atomic sites (methyl, polar, and positively charged sites) in 1 ns molecular dynamics simulations of the α-helical polypeptide SP-C in water, in methanol and in chloroform. For comparison, water residence times at positively and negatively charged sites are obtained from a simulation of a highly charged α-helical polypeptide from the protein titin in water. In the simulations the structure of water is not enhanced at the hydrophobic protein surface, but instead is disrupted and devoid of positional correlation beyond the first solvation sphere. Comparing solvents of different polarity, no clear trend toward the most polar solvent being more ordered is found. In addition, comparison of the water residence times at nonpolar, polar, positively charged, or negatively charged sites on the surface of SP-C or titin does not reveal pronounced or definite differences. It is shown, however, that the local environment may considerably affect solvent residence times. The implications of this work for the interpretation of the hydrophobic effect are discussed. Proteins 27:395-404, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 197
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 410-424 
    ISSN: 0887-3585
    Keywords: domain movements ; inter-domain linkers ; conformational calculations ; Monte Carlo-minimization method ; Bence-Jones protein ; lysine/arginine/ornithine-binding protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A method for modeling large-scale rearrangements of protein domains connected by a single- or a double-stranded linker is proposed. Multidomain proteins may undergo substantial domain displacements, while their intradomain structure remains essentially unchanged. The method allows automatic identification of an interdomain linker and builds an all-atom model of a protein structure in internal coordinates. Torsion angles belonging to the interdomain linkers and side chains potentially able to form domain interfaces are set free while all remaining torsions, bond lengths, and bond angles are fixed. Large-scale sampling of the reduced torsion conformational subspace is effected with the “biased probability Monte Carlo-minimization” method [Abagyan, R.A., Totrov, M.M. (1994): J. Mol. Biol. 235, 983-1002]. Solvation and side-chain entropic contributions are added to the energy function. A special procedure has been developed to generate concerted deformations of a double-stranded interdomain linker in such a way that the polypeptide chain continuity is preserved. The method was tested on Bence-Jones protein with a single-stranded linker and lysine/arginine/ornithine-binding (LAO) protein with a double-stranded linker. For each protein, structurally diverse low-energy conformations with ideal covalent geometry were generated, and an overlap between two sets of conformations generated starting from the crystallographically determined “closed” and “open” forms was found. One of the low-energy conformations generated in a run starting from the LAO “closed” form was only 2.2 Å away from the structure of the “open” form. The method can be useful in predicting the scope of possible domain rearrangements of a multidomain protein. Proteins 27:410-424, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 198
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 438-449 
    ISSN: 0887-3585
    Keywords: α/β hydrolase fold ; catalytic triad ; cyanolysis ; heterologous expression ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: (S)-Hydroxynitrile lyase (Hnl) from the tropical rubber tree Hevea brasiliensis is a 29 kDa single chain protein that catalyses the breakdown or formation of a C(SINGLE BOND)C bond by reversible addition of hydrocyanic acid to aldehydes or ketones. The primary sequence of Hnl has no significant homology to known proteins. Detailed homology investigations employing PROFILESEARCH and secondary structure prediction algorithms suggest that Hnl is a member of the α/β hydrolase fold protein family and contains a catalytic triad as functional residues for catalysis. The significance of the predicted catalytic residues was tested and confirmed by site-directed mutagenesis and expression of mutant and wild-type proteins in the yeast, Saccharomyces cerevisiae. Based on these data we suggest a mechanistic model for the (S)-cyanohydrin synthesis catalyzed by hydroxynitrile lyase from Hevea brasiliensis. Proteins 27:438-449, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 199
    ISSN: 0887-3585
    Keywords: azurin ; cobalt ; x-ray crystallography ; EPR ; Pseudomonas aeruginosa ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The crystal structure of cobalt-substituted azurin from Pseudomonas aeruginosa has been determined to final crystallographic R value of 0.175 at 1.9 Å resolution. There are four molecules in the asymmetric unit in the structure, and these four molecules are packed as a dimer of dimers. The dimer packing is very similar to that of the wild-type Pseudomonas aeruginosa azurin dimer. Replacement of the native copper by the cobalt ion has only small effects on the metal binding site presumably because of the existence of an extensive network of hydrogen bonds in its immediate neighborhood. Some differences are obvious, however. In wild-type azurin the copper atom occupies a distorted trigonal bipyramidal site, while cobalt similar to zinc and nickel occupy a distorted tetrahedral site, in which the distance to the Met121,Sδ atom is increased to 3.3-3.5 Å and the distance to the carbonyl oxygen of Gly45 has decreased to 2.1-2.4 Å. The X-band EPR spectrum of the high-spin Co(II) in azurin is well resolved (apparent g values gx′ = 5.23; gy′ = 3.83; gz′ = 1.995, and hyperfine splittings Ax′ = 31; Ay′ = 20-30; Az′ = 53 G) and indicates that the ligand field is close to axial. Proteins 27:385-394, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 200
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 405-409 
    ISSN: 0887-3585
    Keywords: class II filamentous bacteriophages ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: All class II filamentous bacteriophage coat proteins contain a conserved, 12-amino acid sequence highly homologous to the loop portion of the EF-hand Ca2+-binding motif. The Pf3 coat protein contains two regions of homology to this sequence. The 12-amino acid sequence corresponds to a region of the Pf1 coat protein whose structure is controversial. In some models of the virus structure, this region is α-helical. In others, it forms a loop that folds back on itself. The similarity of this region to the loop in the helix-loop-helix Ca2+-binding motif suggests that it takes on a loop structure in the virion. Each filamentous phage lacks at least one residue normally involved in Ca2+-coordination, consistent with the relatively weak Ca2+ binding properties of the filamentous phages. Consideration of the structure of the coat protein in the membrane and in the virus particle indicates that the protein may be more effective in binding cations in its membrane-bound form than in the virus particle. This suggests that release of cations from this loop may be an obligate step during assembly of the proteins into the virus particle. Proteins 27:405-409, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...