Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019
  • 1995-1999  (12)
  • 1955-1959
  • 1950-1954
  • 1935-1939
  • 1920-1924
  • 1997  (12)
  • Agrobacterium
  • 1
    ISSN: 1572-9818
    Keywords: Agrobacterium ; Populus ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In recent years, Populus species have acquired an important place in basic and applied research of woody plants. The practical role of Populus species in world forestry and their importance to research as a woody-plant model have led to increasing interest in tissue-culture and molecular techniques, as well as the development of transformation procedures for this genus. A simple technical procedure is described here step-by-step, for the first time, as a routine method for transforming Populus tremula using a disarmed Agrobacterium tumefaciens hypervirulent strain. The procedure begins with the inoculation of stem explants with bacterial suspension, followed by a short period of co-cultivation on a highly regenerative medium. Transformed shoots are selected on regeneration medium containing antibiotics and the presence of the inserted target genes is checked using a rapid and efficient PCR test. Selected shoots are transferred to a rooting medium, under the same selection pressure, and propagated via stem cuttings. Selected plants can be hardened and transferred to the green-house within 4 months of inoculation. The method has proven efficient for several gene constructs, selection on Kan or Hyg, and three different Agrobacterium strains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Agrobacterium ; Leaf mesophyll cells ; Petunia ; Transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chimeric β-glucuronidase (GUS) gene expression in an efficientAgrobacterium-mediated transformation system utilising mesophyll cells ofPetunia hybrida synchronized with cell cycle phase-specific inhibitors (mimosine and colchicine) was used to show the absolute requirement of S-phase for transfer and/or integration of the transferred DNA (T-DNA). Flow-cytometric analysis of nuclear DNA content and immunohistological detection of bromodeoxyuridine (BrdUrd) incorporation showed that, prior to phytohormone treatment, most (98%) mesophyll cells were at GO-Gl-phase (quiescent phase) and no cell division was occurring. After 48 h and 72 h of phytohormone treatment, there was a rapid increase in S-G2-M-phase populations (〉 75%) and a concomitant decrease (down to 24%) in G0–-G1-phase cells. Assays of GUS showed that maximum transformation (〉 95% of explants) also occurred after this period. Our data showed that mimosine and colchicine blocked the mesophyll cells at late Gl-phase and M-phase, respectively. No transformation (= GUS expression) was observed in phytohormone-treated cells inhibited in late G1 by mimosine. However, after removal of mimosine, 82% of the explants were transformed, indicating the non-toxic and reversible effect of the inhibitor. On the other hand, a relatively high transformation frequency (65% of explants) was observed after blocking the cell cycle at M-phase with colchicine. However, only transient, but no stable, gene expression (= kanamycin-resistant callus formation) was observed in colchicine-treated M-phase-arrested cells. Similarly, endoreduplication of nuclear DNA, which occurred during the 48 h of phytohormone treatment in some mesophyll cells and cells located along the minor veins in the leaf explants, resulted in transient GUS expression only. These observations indicate a direct correlation between endoreduplication and transient GUS gene expression. Obviously, for stable GUS gene expression, cell division and proliferation are required, indicating that both DNA duplication (S-phase) and cell division (M-phase) are strongly related to stable transformation. We propose that the present system should facilitate further dissection of the process of T-DNA integration in the host genome and therefore should aid in developing new strategies for transformation of recalcitrant plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-203X
    Keywords: Transgenic peanut ; Agrobacterium ; Transformation ; Transgene expression ; Transgene inheritance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To evaluate and characterize the stability of traits transferred viaAgrobacterium transformation, foreign gene expression must be examined in sexually derived progeny. The objective of this study was to analyze three transgenic peanut plants, 1-10, 12-1, and 17-1, for the inheritance and expression of their foreign genes. Segregation ratios for the introduced genes in T2 plants gave either 100% or 3:1 expression of the β-glucuronidase (GUS) gene, demonstrating recovery of both homozygous and heterozygous T1 plants. Fluorometric GUS assay in T1 and T2 generations of all three plants showed that the GUS gene was stably expressed in the progeny. DNA analyses showed 100% concordance between the presence of the foreign gene and enzyme activity. Our results demonstrate that transgenes in peanut introduced byAgrobacterium can be inherited in a Mendelian manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Key words 6-Methylnicotinic acid ; 2-Hydroxy-6-methylnicotinic acid ; Nicotinic acid ; 2-Hydroxynicotinic acid ; Ralstonia ; Burkholderia ; Paenibacillus ; Agrobacterium ; Rhizobium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 2-Hydroxynicotinic acid is an important building block for herbicides and pharmaceuticals. Enrichment strategies to increase the chances of finding microorganisms capable of hydroxylating at the C2 position and to avoid the degradation of nicotinic acid via the usual intermediate, 6-hydroxynicotinic acid, were used. Three bacterial strains (Mena 23/3–3c, Mena 25/4–1, and Mena 25/ 4–3) were isolated from enrichment cultures with 6-methylnicotinic acid as the sole source of carbon and energy. Partial characterization of these strains indicated that they represent new bacterial species. All three strains completely degraded 6-methylnicotinic acid, and evidence is presented that the first step in the degradation pathway of strain Mena 23/3–3c is hydroxylation at the C2 position. Resting cells of this strain grown on 6-methylnicotinic acid also hydroxylated nicotinic acid at the C2 position, but did not further degrade the product. Strain Mena 23/ 3–3c showed the highest degree of 16S rRNA sequence similarity to members of the genera Ralstonia and Burkholderia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 33 (1997), S. 1097-1103 
    ISSN: 1573-5028
    Keywords: Ac ; Agrobacterium ; periclinal chimera ; rolC ; transgenic Populus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The transposable element Ac from maize, in combination with the phenotypic selectable marker rolC, was employed in transformation experiments of a hybrid aspen clone. A number of transgenic clones exhibited light-green sectors on green leaves. In vitro regeneration from leaves showing a high number of light-green spots resulted in R2 plants, which also showed light-green sectored leaves. However, only one out of 385 regenerated plants obtained showed green leaves. Both PCR and northern analysis indicated Ac excision and restoration of rolC expression. In Southern blot analysis of this green plant additional bands were observed as compared to the original R1 plant. The occurrence of these bands and a suggested Ac excision in the non-green L1-epidermal layer leading to periclinal chimerism of this plant is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 16 (1997), S. 363-367 
    ISSN: 1432-203X
    Keywords: Agrobacterium ; Tapetum-specific promoter ; Transformation ; Rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The promoter of an anther tapetum-specific gene,Osg6B, was fused to aβ-glucuronidase (GUS) gene and introduced into rice byAgrobacterium-mediated gene transfer. Fluorometric and histochemical GUS assay showed that GUS was expressed exclusively within the tapetum of anthers from the uninucleate microspore stage (7 days before anthesis) to the tricellular pollen stage (3 days before anthesis). This is the first demonstration of an anther-specific promoter directing tapetum-specific expression in rice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-203X
    Keywords: Key words Transgenic peanut ; Agrobacterium ; Transformation ; Transgene expression ; Transgene inheritance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To evaluate and characterize the stability of traits transferred via Agrobacterium transformation, foreign gene expression must be examined in sexually derived progeny. The objective of this study was to analyze three transgenic peanut plants, 1-10, 12-1, and 17-1, for the inheritance and expression of their foreign genes. Segregation ratios for the introduced genes in T2 plants gave either 100% or 3:1 expression of the β-glucuronidase (GUS) gene, demonstrating recovery of both homozygous and heterozygous T1 plants. Fluorometric GUS assay in T1 and T2 generations of all three plants showed that the GUS gene was stably expressed in the progeny. DNA analyses showed 100% concordance between the presence of the foreign gene and enzyme activity. Our results demonstrate that transgenes in peanut introduced by Agrobacterium can be inherited in a Mendelian manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-9368
    Keywords: Ac ; Agrobacterium ; aspen ; Populus ; transformation ; transposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aspen (Populus tremula) and hybrid aspen (P. tremula × P. tremuloides) were transformed with different gene constructs using two types of promoter. The aim was to determine the influence of the reporter gene rolC, controlled by promoters of viral or plant origin, on genetic and morphologic expression of different transgenic aspen clones. An improved transformation method using leaf discs was developed, by which putative transgenic plantlets were regenerated at high efficiencies (up to 34%) on kanamycin-containing medium. Transgenic aspen carrying the rolC gene from Agrobacterium rhizogenes under control of the cauliflower-35S-promoter are reduced in size with smaller leaves, whereas aspen transgenic for the same rolC gene, but under control of the light inducible rbcS promoter from potato, are only slightly reduced in size compared to untransformed controls. However, all clones carrying 35S-rolC and rbcS-rolC genes revealed light-green colouration of leaves when compared to untransformed aspen. Owing to this special feature, constructs were used in which expression of the rolC gene was inhibited by insertion of a transposable element, Ac, from maize. Transgenic aspen transformed with the 35S-Ac-rolC and rbcS-Ac-rolC genes were morphologically similar to untransformed aspen, but out of 54 independently regenerated 35S-Ac-rolC transgenic aspen clones, 30 clones showed light-green/dark green variegated leaves. In contrast, out of 19 independently transformed rbcS-Ac-rolC aspen clones, only two clones revealed light-green/dark green variegated leaves. The role of bacterial strains in transformation, and molecular genetics of transgenic aspen plants (including the function of the transposable element, Ac, in the aspen genome) are discussed
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5044
    Keywords: Agrobacterium ; coat protein ; grapevine ; hairy root ; nepovirus ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Hairy root cultures of grapevine were obtained from plantlets co-inoculated by virulent Agrobacterium rhizogenes strains and disarmed A. tumefaciens strains harbouring the binary vectors pKHG4 and pKVHG 2+. These plasmids contain the nptII, hpt and gus genes and differ for the presence of the gene encoding for the grapevine chrome mosaic virus coat protein. For the cultivar ‘Gravesac’, 72% of the excised root tips initiated hairy root cultures on growth regulator-free media. According to the nature of the strains used in co-inoculation, co-transformation frequencies of the hairy root clones ranged from 4 to 16%. Co-transformed roots showed resistance to kanamycin and hygromycin but responses varied from clone to clone. Fluorometric GUS expression and GCMV coat protein production showed a large variability among hairy root clones co-transformed by pKHVG2+. Though the presence of gus, nptII and GCMV coat protein genes was checked by polymerase chain reaction and Southern blotting, it was difficult to establish a clear relationship between expression of the different transgenes. The regeneration of plants was not achieved, but the possibility to graft in vitro transgenic roots to non transformed shoot systems could permit rapid testing of the resistance induced by nepovirus coat protein in roots of cultivars that are recalcitrant to A. tumefaciens-mediated transformation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: Agrobacterium ; Capparis spinosa ; Comamonas ; N2 fixation ; Pseudomonas ; rhizosphere ; Sphingobacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Four bacterial strains, Pseudomonas stutzeri var. mendocina, Comamonas sp., Agrobacterium tumefaciens biovar. 2 and Sphingobacterium sp., isolated from the rhizosphere of wild-grown caper (Capparis spinosa L.) plants were able to fix N2 as shown by their growth in nitrogen-free medium and by the acetylene reduction test. P. stutzeri var. mendocina and Comamonas sp. contained DNA homologous to the Klebsiella pneumoniae M5a1 nifHDK genes. No hybridization was found with total DNA from either A. tumefaciens biovar. 2 or Sphingobacterium sp. using nifHDK probes from either K. pneumoniae or Rhizobium meliloti.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Transgenic research 6 (1997), S. 329-336 
    ISSN: 1573-9368
    Keywords: Agrobacterium ; SAAT ; sonication ; transformation ; wounding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plant transformation via Agrobacterium can be limited by both host specificity and the inability of Agrobacterium to reach the proper cells in the target tissue. Described here is a new and efficient Agrobacterium-based transformation technology that overcomes these barriers and enhances DNA transfer in such diverse plant groups as dicots, monocots, and gymnosperms. This new technology, called sonication-assisted Agrobacterium-mediated transformation (SAAT), involves subjecting the plant tissue to brief periods of ultrasound in the presence of Agrobacterium. Scanning electron and light microscopy reveal that SAAT treatment produces small and uniform fissures and channels throughout the tissue allowing the Agrobacterium easy access to internal plant tissues. Unlike other transformation methods, this system has the potential to transform meristematic tissue buried under several cell layers. SAAT increases transient transformation efficiency in several different plant tissues including leaf tissue, immature cotyledons, somatic and zygotic embryos, roots, stems, shoot apices, embryogenic suspension cells and whole seedlings. A 100- to 1400-fold increase in transient β- glucuronid ase expression has been demonstrated in various tissues of soybean, Ohio buckeye, cowpea, white spruce, wheat and maize. Stable transformation of both soybean and Ohio buckeye has been obtained using SAAT of embryogenic suspension culture tissues. For soybean, SAAT treatment was necessary to obtain stable transformation with this tissue
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1573-9368
    Keywords: GUS ; matrix attachment regions ; Populus ; transformation ; transgene expression ; Agrobacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested the value of a matrix attachment region (MAR) fragment derived from a tobacco gene for increasing the frequency of Agrobacterium-mediated transformation. A binary vector that carried a GUS reporter gene containing an intron and an nptII gene was modified to contain flanking MAR elements within the T-DNA borders. Vectors containing or lacking MARs were then used to transform tobacco, a readily transformabl e poplar clone (Populus tremula × P. alba), and a recalcitrant poplar clone (Populus trichocarpa × P. deltoides). MARs increased GUS gene expression approximately 10-fold in the two hybrid poplar clones and twofold in tobacco one month after cocultivation with Agrobacterium; MARs also increased the frequency of kanamycin-resistant poplar shoots recovered
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...