Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (5,292)
  • 1975-1979  (885)
  • 1920-1924
  • Biochemistry and Biotechnology  (6,177)
  • 101
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 201-213 
    ISSN: 0887-3585
    Keywords: accessibility to internal cavities ; crystallographic thermal factors ; ligand binding ; protein dynamic ; protein structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Protein structures are flexible both in solution and in the solid state. X-ray crystallographically determined thermal factors monitor the flexibility of protein atoms. A method utilizing such factors is proposed to delineate protein regions through which a ligand can exchange between binding site and bulk solvent. It is based on the assumption that thermally excited protein regions are excellent candidates for opening a ligand channel. Computationally simple and inexpensive, the method analyzes directions from which thermal factors can propagate within the protein, resulting in thermal motion paths (TMPs). Applications to engineered T4 lysozymes, where an artificial internal cavity can host hydrophobic molecules, and to sperm whale myoglobins, where the active site is completely buried, yielded results in agreement with other independent structural observations and with previous hypotheses. Further new features could also be suggested. The proposed TMP analysis could aid molecular dynamics simulation studies as well as time-resolved and site-directed mutagenesis experimental studies, especially given its modest computational expense and its direct roots in experimental results based on thermal factors determined in high-resolution crystallographic studies. Proteins 31:201-213,1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 214-223 
    ISSN: 0887-3585
    Keywords: β-glucosidases (family 3) ; circular permutation ; β/α-barrel ; “mainly all-β” domain ; double-domain topology ; secondary-structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: By predicting the general secondary structure for β-glucosidases (family 3), in conjunction with existing knowledge of the circular permutants present in B. fibrisolvens and R. albus, we were able to find the canonical elements of the secondary structure. The way these elements are linked suggests that there is a double-domain topology made up of a (β/α)8-barrel domain and a “mainly all-β” domain. A number of already known conserved motifs are located within (or near) the C-terminal part of the putative parallel β-strands of the (β/α)8-barrel, which is consistent with what is known about the location of catalytical sites for enzymes that have this domain topology. Within the circular permutants, two β/α units are located at the N-terminal part of the molecule, whereas the other six β/α units are located at the C-terminal end. In this way, the circular permutants can be seen to have a putative discontinuous double-domain topology. Proteins 31:214-223, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 247-257 
    ISSN: 0887-3585
    Keywords: protein structure prediction ; supersecondary structure ; genetic algorithm ; solvent accessible surface area ; hydrophobic potential ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We describe an algorithm to compute native structures of proteins from their primary sequences. The novel aspects of this method are: 1) The hydrophobic potential was set to be proportional to the nonpolar solvent accessible surface. To make computation feasible, we developed a new algorithm to compute the solvent accessible surface areas rapidly. 2) The supersecondary structures of each protein were predicted and used as restraints during the conformation searching processes. This algorithm was applied to five proteins. The overall fold of these proteins can be computed from their sequences, with deviations from crystal structures of 1.48-4.48 Å for Cα atoms. Proteins 31:247-257, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 258-270 
    ISSN: 0887-3585
    Keywords: IIAglc ; NMR ; protein phosphorylation ; PTS ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The high-resolution solution structure of the phosphocarrier protein IIAglc from Bacillus subtilis is determined using 3D and 4D heteronuclear NMR methods. B. subtilis IIAglc contains 162 amino acid residues and is one of the larger proteins for which high-resolution solution structure has been determined by NMR methods. The structures have been calculated from a total of 2,232 conformational constraints. Comparison with the X-ray crystal structure indicates that the overall fold is the same in solution and in crystalline environments, although some local structural differences are observed. These occur largely in turns and loops, and mostly correspond to regions with high-temperature factors in the crystal structure. The N-terminus of IIAglc is disordered in solution. The active site is located in a concave region of the protein surface. The histidine, which accepts the phosphoryl group (His 83), interacts with a neighboring histidine (His 68) and is surrounded by hydrophobic residues. Proteins 31:258-270, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 225-246 
    ISSN: 0887-3585
    Keywords: residue location parameter ; environment parameter ; protein fold description ; protein fold recognition ; threading ; homogeneity ; amino acid type discrimination ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The parametric description of residue environments through solvent accessibility, backbone conformation, or pairwise residue-residue distances is the key to the comparison between amino acid types at protein sequence positions and residue locations in structural templates (condition of protein sequence-structure match). For the first time, the research results presented in this study clarify and allow to quantify, on a rigorous statistical basis, to what extent the amino acid type-specific distributions of commonly used environment parameters are discriminative with respect to the 20 amino acid types. Relying on the Bahadur theory, we estimate the probability of error in a single-sequence-structure alignment based on weak or absent discriminative power in a learning database of protein structure. We present the results for many residue environment variables and demonstrate that each fold description parameter is sensitive with respect to only a few amino acid types while indifferent to most of the other amino acid types. Even complex structural characteristics combining solvent-accessible surface area, backbone conformation, and pairwise distances distinguish only some amino acid types, whereas the others remain nondiscriminated. We find that the knowledge-based potentials currently in use treat especially Ala, Asp, Gln, His, Ser, Thr, and Tyr as essentially “average” amino acids. Thus, highly discriminative amino acid types define the alignment register in gapless sequence-structure alignments. The introduction of gaps leads to alignment ambiguities at sequence positions occupied by nondiscriminated amino acid types. Therefore, local sequence-structure alignments produced by techniques with gaps cannot be reliable. Conceptionally new and more sensitive environment parameters must be invented. Proteins 31:225-246, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 271-281 
    ISSN: 0887-3585
    Keywords: low resolution models ; knowledge-based potentials ; unfolding kinetics ; helix unwinding ; cooperative motions ; dynamic Monte Carlo ; correlations between atomic fluctuations ; virtual bond rotations ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A coarse-grained dynamic Monte Carlo method is proposed for investigating the conformational dynamics of proteins. Each residue is represented by two interaction sites, one at the α-carbon, and the other on the amino acid sidechain. Geometry and energy parameters extracted from databank structures are used. The method is applied to the crystal structure of apomyoglobin (apo-Mb). Equilibrium and dynamic properties of apo-Mb are characterized within computation times one order of magnitude shorter than conventional molecular dynamics (MD) simulations. The calculated rms fluctuations in α-carbons are in good agreement with crystallographic temperature factors. Regions exhibiting enhanced conformational mobilities are identified. Among the loops connecting the eight helices A to H, the loop CD undergoes the fastest motions, leading to partial unwinding of helix D. Helix G is the most stable helix on the basis of the kinetic stability of dihedral angles, followed by the respective helices A, E, H, and B. These results, in agreement with H/D exchange and two-dimensional NMR experiments, as well as with MD simulations, lend support to the use of the proposed approach as an efficient, yet physically plausible, means of characterizing protein conformational dynamics. Proteins 31:271-281, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    ISSN: 0887-3585
    Keywords: M-CSF ; cytokine ; c-fms ; folding intermediates ; tryptophan fluorescence ; selective chemical modification ; melarsen oxide ; ESI-MS ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Melarsen oxide [p-(4,6-diamino-1,3,5-triazin-2-yl)aminophenylarsonous acid (MEL)], which selectively bridges spatially neighboring bis-cysteinyl residues in (reduced) proteins, was used to trap folding intermediates chemically during 1) time-dependent renaturation of recombinant human macrophage colony-stimulating factor (rhM-CSF); by redox refolding in vitro; 2) reductive unfolding in the presence of the trapping reagent; and 3) denaturing unfolding reactions in urea and guanidinium hydrochloride. Characterization of intermediates from folding and unfolding reactions was performed by electrospray ionization mass spectometry (ESI-MS). In all folding and unfolding reactions a characteristic dimeric intermediate with two attached melarsen oxide (MEL) groups was observed, suggesting that these rhM-CSF β species were important refolding intermediates. These intermediates presented a characteristic “charge structure” in ESI spectra with a most abundant 26+ charged molecular ion whereas the mature homodimeric rhM-CSF β showed a most abundant 23+ molecular ion, indicating that the final product was more compact. The major locations of the two MEL groups were identified by mass spectrometric peptide mapping at cysteine residues C157 and C159 from each monomer. Cysteine residues C7 and C90 were minor modification sites. The mass spectrometric results from the in vitro folding reactions of rhM-CSF β are in agreement with intrinsic tryptophan fluorescence measurements and are consistent with the folding pathway that starts with a fully reduced monomer (R), includes partially folded monomeric intermediates (M) and dimeric intermediates (D), and yields a final product with the native tertiary structure (N): 2R ⇒ 2M ⇒ D ⇒ N. Our results show that selective chemical trapping of bis-thiol groups of proteins with MEL permits study of folding pathways by mass spectrometric structure characterization of intermediates with otherwise transient conformations. Proteins Suppl. 2:50-62, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 74-89 
    ISSN: 0887-3585
    Keywords: mass spectrometry ; matrix-assisted laser desorption/ionization ; electrospray ; database searching ; gel electrophoresis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The entire genomic DNA sequences of a number of prokaryotic and eukaryotic species are now available and many more, including the human genome, will be completed in the near future. The state-of-life of a cell at any given time, however, is defined by its protein composition, i.e., its proteome. Gel electrophoresis, mass spectrometry, and bioinformatics will be important tools for protein and proteome analysis in the post-genome era. Protein identification from electrophoretic gels by mass spectrometric peptide mapping or peptide sequencing combined with sequence database searching is established and has been applied to numerous biological systems. We describe current strategies and selected applications in molecular and cell biology. The next challenges are detailed structure/function analyses, which include studying the molecular composition of multiprotein complexes and characterization of secondary modifications of proteins. The advantages and limitations of a number of mass spectrometry-based strategies designed for microcharacterization of low amounts of protein from electrophoretic gels are discussed and illustrated by examples. Proteins Suppl. 2:74-89, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    ISSN: 0887-3585
    Keywords: X-ray structure ; L-chain apoferritin ; metal binding sites ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We refined the structure of the tetragonal form of recombinant horse L-chain apoferritin to 2.0 Å and we compared it with that of the cubic form previously refined to the same resolution. The major differences between the two structures concern the cadmium ions bound to the residues E130 at the threefold axes of the molecule. Taking advantage of the significant anomalous signal (f′′ = 3.6 e-) of cadmium at 1.375 Å, the wavelength used here, we performed anomalous Fourier difference maps with the refined model phases. These maps reveal the positions of anomalous scatterers at different locations in the structure. Among these, some are found near residues that were known previously to bind metal ions, C48, E57, C126, D127, E130, and H132. But new cadmium binding sites are evidenced near residues E53, E56, E57, E60, and H114, which were suggested to be involved in the iron loading process. The quality of the anomalous Fourier difference map increases significantly with noncrystallographic symmetry map averaging. Such maps reveal density peaks that fit the positions of Met and Cys sulfur atoms, which are weak anomalous scatterers (f′′ = 0.44 e-). Proteins 31:477-485, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    ISSN: 0887-3585
    Keywords: conformational change ; free energy calculations ; HIV protease ; molecular dynamics simulations ; protein structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Two different structures of ligand-free HIV protease have been determined by X-ray crystallography. These structures differ in the position of two 12 residue, β-hairpin regions (or “flaps”) which cap the active site. The movements of the flaps must be involved in the binding of substrates since, in either conformation, the flaps block the binding site. One of these structures is similar to structures of the ligand-bound enzyme; however, the importance of both structures to enzyme function is unclear. This transformation takes place on a time scale too long for conventional molecular dynamics simulations, so the process was studied by first identifying a reaction path between the two structures and then calculating the free energy along this path using umbrella sampling. For the ligand-free enzyme, it is found that the two structures are nearly equally stable, with the ligand-bound-type structure being less stable, consistent with X-ray crystallography data. The more stable open structure does not have a lower potential energy, but is stabilized by entropy. The transition occurs through a collapse and reformation of the β-sheet structure of the conformationally flexible, glycine-rich flap ends. Additionally, some problems in studying conformational changes in proteins through the use of a single reaction path are addressed. Proteins 32:7-16, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    ISSN: 0887-3585
    Keywords: colicin E7 ; CD spectrum ; chromatography ; protein folding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Purified colicin E7 was analyzed by CD spectrum and gel filtration chromatography in a mimicking membrane-translocation phase. It was found that the CD spectra of colicin E7 at pH 7 and pH 2.5 were similar. Although the melting temperature of the protein shifted from 54.5°C to 34°C at low pH, the thermal denaturation curves of colicin E7 at different pH conditions still fit a two-state model. These experimental results imply that a minor structural change, triggered by acidic pH, for instance, may reduce the energy required for protein melting. In contrast to the minor change in secondary structure at different pH conditions, we observed that, in vitro, all monomeric colicin E7s converted into multimer-like conformations after recovering from the partial unfolding process. This multimeric form of colicin can only be dissociated by formamide and guanidine hydrochloride, indicating that this protein complex is indeed formed by aggregation of the monomeric colicins. Most interestingly, the aggregated colicins still perform in vivo bacteriocidal activity. We suggest that in a partial unfolding state the colicin is prepared for binding to the specific targets for translocation through the membrane. However, in the absence of specific targets in vitro these unfold intermediates may therefore aggregate into the multimeric form of colicins. Proteins 32:17-25, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 26-42 
    ISSN: 0887-3585
    Keywords: intermolecular restraints ; solid-state NMR ; symmetric multimer ; branch and bound ; amyloid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The determination of structures of multimers presents interesting new challenges. The structure(s) of the individual monomers must be found and the transformations to produce the packing interfaces must be described. A substantial difficulty results from ambiguities in assigning intermolecular distance measurements (from nuclear magnetic resonance, for example) to particular intermolecular interfaces in the structure. Here we present a rapid and efficient method to solve the packing and the assignment problems simultaneously given rigid monomer structures and (potentially ambiguous) intermolecular distance measurements. A promising application of this algorithm is to couple it with a monomer searching protocol such that each monomer structure consistent with intramolecular constraints can be subsequently input to the current algorithm to check whether it is consistent with (potentially ambiguous) intermolecular constraints. The algorithm AmbiPack uses a hierarchical division of the search space and the branch-and-bound algorithm to eliminate infeasible regions of the space. Local search methods are then focused on the remaining space. The algorithm generally runs faster as more constraints are included because more regions of the search space can be eliminated. This is not the case for other methods, for which additional constraints increase the complexity of the search space. The algorithm presented is guaranteed to find all solutions to a predetermined resolution. This resolution can be chosen arbitrarily to produce outputs at various level of detail. Illustrative applications are presented for the P22 tailspike protein (a trimer) and portions of β-amyloid (an ordered aggregate). Proteins 32:26-42, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 43-51 
    ISSN: 0887-3585
    Keywords: dimeric mutant protein ; conformational stability ; guanidinium hydrochloride equilibrium denaturation ; intermediate state ; molten globule ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A mutant of the dimeric rabbit muscle creatine kinase (MM-CK) in which tryptophan 210 was replaced has been studied to assess the role of this residue in dimer cohesion and the importance of the dimeric state for the native enzyme stability. Wild-type protein equilibrium unfolding induced by guanidine hydrochloride occurs through intermediate states with formation of a molten globule and a premolten globule. Unlike the wild-type enzyme, the mutant inactivates at lower denaturant concentration and the loss of enzymatic activity is accompanied by the dissociation of the dimer into two apparently compact monomers. However, the Stokes radius of the monomer increases with denaturant concentration as determined by size exclusion chromatography, indicating that, upon monomerization, the protein structure is destabilized. Binding of 8-anilinonaphthalene-1-sulfonate shows that the dissociated monomer exposes hydrophobic patches at its surface, suggesting that it could be a molten globule. At higher denaturant concentrations, both wild-type and mutant follow similar denaturation pathways with formation of a premolten globule around 1.5-M guanidine, indicating that tryptophan 210 does not contribute to a large extent to the monomer conformational stability, which may be ensured in the dimeric state through quaternary interactions. Proteins 32:43-51, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 52-66 
    ISSN: 0887-3585
    Keywords: heteropolymers ; lattice models ; lattice polymers ; Monte Carlo ; protein folding ; protein structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We demonstrate that the recently proposed pruned-enriched Rosenbluth method (PERM) (Grassberger, Phys. Rev. E 56:3682, 1997) leads to extremely efficient algorithms for the folding of simple model proteins. We test it on several models for lattice heteropolymers, and compare it to published Monte Carlo studies of the properties of particular sequences. In all cases our method is faster than the previous ones, and in several cases we find new minimal energy states. In addition to producing more reliable candidates for ground states, our method gives detailed information about the thermal spectrum and thus allows one to analyze thermodynamic aspects of the folding behavior of arbitrary sequences. Proteins 32:52-66, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 67-79 
    ISSN: 0887-3585
    Keywords: salt bridge ; solvation ; continuum models ; electrostatic interactions ; protein stability ; proton transfer ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A theoretical study on the stability of the salt bridges in the gas phase, in solution, and in the interior of proteins is presented. The study is mainly focused on the interaction between acetate and methylguanidinium ions, which were used as model compounds for the salt bridge between Asp (Glu) and Arg. Two different solvents (water and chloroform) were used to analyze the effect of varying the dielectric constant of the surrounding media on the salt bridge interaction. Calculations in protein environments were performed by using a set of selected protein crystal structures. In all cases attention was paid to the difference in stability between the ion pair and neutral hydrogen-bonded forms. Comparison of the results determined in the gas phase and in solution allows us to stress the large influence of the environment on the binding process, as well as on the relative stability between the ionic and neutral complexes. The high anisotropy of proteins and the local microenvironment in the interior of proteins make a decisive contribution in modulating the energetics of the salt bridge. In general, the formation of salt bridges in proteins is not particularly favored, with the ion pair structure being preferred over the interaction between neutral species. Proteins 32:67-79, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 88-96 
    ISSN: 0887-3585
    Keywords: structural alignment ; multiple alignment ; pattern recognition ; statistical significance ; BRCA1 ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Based on the observation that a single mutational event can delete or insert multiple residues, affine gap costs for sequence alignment charge a penalty for the existence of a gap, and a further length-dependent penalty. From structural or multiple alignments of distantly related proteins, it has been observed that conserved residues frequently fall into ungapped blocks separated by relatively nonconserved regions. To take advantage of this structure, a simple generalization of affine gap costs is proposed that allows nonconserved regions to be effectively ignored. The distribution of scores from local alignments using these generalized gap costs is shown empirically to follow an extreme value distribution. Examples are presented for which generalized affine gap costs yield superior alignments from the standpoints both of statistical significance and of alignment accuracy. Guidelines for selecting generalized affine gap costs are discussed, as is their possible application to multiple alignment. Proteins 32:88-96, 1998. Published 1998 Wiley-Liss, Inc.This article is a US government work and, as such, is in the public domain in the United States of America.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 97-110 
    ISSN: 0887-3585
    Keywords: type A monoamine oxidase ; MAO A ; secondary structure ; fold prediction ; threading ; knowledge-based modeling ; flavoproteins ; membrane protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A survey of the major known structural aspects of monoamine oxidase (MAO) is given and a first partial model of human MAO A is presented. This 3D model has been established using secondary structure predictions and fold recognition methods. It shows two α/β domains (the FAD-binding N-terminal and central domains) and an α+β domain. The C-terminal region is predicted to be responsible for anchoring the protein into the mitochondrial membrane and was not modeled. The covalent binding of the flavin cofactor to a cysteine residue is well predicted. The model is validated with experimental data from the literature and should be useful in designing new experimental studies (site-directed mutagenesis, chemical modification, specific antibodies). This first step towards the 3D structure of monoamine oxidase should contribute to a better understanding of the mechanisms of action and inhibition of this drug target in the treatment of clinical depression. Proteins 32:97-110, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 129-135 
    ISSN: 0887-3585
    Keywords: hydration ; PMF ; solvent-induced forces ; molecular dynamics ; BPTI ; protein folding ; funneling and recognition ; energy landscapes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Molecular dynamics simulations of model solutes in explicit molecular water have recently elicited novel aspects of the strong nonpair additivity of the potential of mean force (PMF) and related solvent-induced forces (SIFs) and hydration. Here we present the results of the same type of work on SIFs acting on bovine pancreatic trypsin inhibitor (BPTI) at single residue/sidechain resolution. In this system, nonpair additivity and the consequent dependence of SIFs on the protein conformational context are sufficiently strong to overturn SIFs on some individual residues, relative to expectations based on their individual characters. This finding calls for a revisitation and offers a richer and diversified understanding of the role of hydrophobic/philic/charged groups in establishing the exquisite specificity of biomolecular folding and functional conformation. Its relevance is appreciated by noting that the work of a typical SIF acting on one residue, when displaced across a distance of 1 Å, is the equivalent of up to a few kcal/mol, which is the range of the stability/function free energy of a protein. Proteins 32:129-135, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 175-189 
    ISSN: 0887-3585
    Keywords: pairwise statistics ; secondary structure ; nonlocal interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A statistical analysis was performed to determine to what extent an amino acid determines the identity of its neighbors and to what extent this is determined by the structural environment. Log-linear analysis was used to discriminate chance occurrence from statistically meaningful correlations. The classification of structures was arbitrary, but was also tested for significance. A list of statistically significant interaction types was selected and then ranked according to apparent importance for applications such as protein design. This showed that, in general, nonlocal, through-space interactions were more important than those between residues near in the protein sequence. The highest ranked nonlocal interactions involved residues in β-sheet structures. Of the local interactions, those between residues i and i + 2 were the most important in both α-helices and β-strands. Some surprisingly strong correlations were discovered within β-sheets between residues and sites sequentially near to their bridging partners. The results have a clear bearing on protein engineering studies, but also have implications for the construction of knowledge-based force fields. Proteins 32:175-189, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 190-199 
    ISSN: 0887-3585
    Keywords: protein structure ; solvent accessibility ; protein sequence ; protein structure prediction ; protein folding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An easy and uncomplicated method to predict the solvent accessibility state of a site in a multiple protein sequence alignment is described. The approach is based on amino acid exchange and compositional preference matrices for each of three accessibility states: buried, exposed, and intermediate. Calculations utilized a modified version of the 3D―ali databank, a collection of multiple sequence alignments anchored through protein tertiary structural superpositions. The technique achieves the same accuracy as much more complex methods and thus provides such advantages as computational affordability, facile updating, and easily understood residue substitution patterns useful to biochemists involved in protein engineering, design, and structural prediction. The program is available from the authors; and, due to its simplicity, the algorithm can be readily implemented on any system. For a given alignment site, a hand calculation can yield a comparative prediction. Proteins 32:190-199, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 381-396 
    ISSN: 0887-3585
    Keywords: protein cavity ; molecular dynamics simulation ; free energy calculation ; particle insertion ; protein hydration ; protein ligand binding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Hydration of protein cavities influences protein stability, dynamics, and function. Protein active sites usually contain water molecules that, upon ligand binding, are either displaced into bulk solvent or retained to mediate protein-ligand interactions. The contribution of water molecules to ligand binding must be accounted for to compute accurate values of binding affinities. This requires estimation of the extent of hydration of the binding site. However, it is often difficult to identify the water molecules involved in the binding process when ligands bind on the surface of a protein. Cytochrome P450cam is, therefore, an ideal model system because its substrate binds in a buried active site, displacing partially disordered solvent, and the protein is well characterized experimentally. We calculated the free energy differences for having five to eight water molecules in the active site cavity of the unliganded enzyme from molecular dynamics simulations by thermodynamic integration employing a three-stage perturbation scheme. The computed free energy differences between the hydration states are small (within 12 kJ mol-1) but distinct. Consistent with the crystallographic determination and studies employing hydrostatic pressure, we calculated that, although ten water molecules could in principle occupy the volume of the active site, occupation by five to six water molecules is thermodynamically most favorable. Proteins 32:381-396, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 362-380 
    ISSN: 0887-3585
    Keywords: molecular dynamics simulations ; mutagenesis ; aminoacyl-tRNA synthetase ; ATP ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Histidyl-tRNA synthetase (HisRS) differs from other class II aminoacyl-tRNA synthetases (aaRS) in that it harbors an arginine at a position where the others bind a catalytic Mg2+ ion. In computer experiments, four mutants of HisRS from Escherichia coli were engineered by removing the arginine and introducing a Mg2+ ion and residues from seryl-tRNA synthetase (SerRS) that are involved in Mg2+ binding. The mutants recreate an active site carboxylate pair conserved in other class II aaRSs, in two possible orders: Glu-Asp or Asp-Glu, replacing Glu-Thr in native HisRS. The mutants were simulated by molecular dynamics in complex with histidyl-adenylate. As controls, the native HisRS was simulated in complexes with histidine, histidyl-adenylate, and histidinol. The native structures sampled were in good agreement with experimental structures and biochemical data. The two mutants with the Glu-Asp sequence showed significant differences in active site structure and Mg2+ coordination from SerRS. The others were more similar to SerRS, and one of them was analyzed further through simulations in complex with histidine, and His+ATP. The latter complex sampled two Mg2+ positions, depending on the conformation of a loop anchoring the second carboxylate. The lowest energy conformation led to an active site geometry very similar to SerRS, with the principal Mg2+ bridging the α- and β-phosphates, the first carboxylate (Asp) coordinating the ion through a water molecule, and the second (Glu) coordinating it directly. This mutant is expected to be catalytically active and suggests a basis for the previously unexplained conservation of the active site Asp-Glu pair in class II aaRSs other than HisRS. Proteins 32:362-380, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 414-424 
    ISSN: 0887-3585
    Keywords: P1 nuclease ; X-ray crystallography ; substrate recognition ; catalytic mechanism ; thiophosphorylated oligonucleotides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The reaction mechanism of nuclease P1 from Penicillium citrinum has been investigated using single-stranded dithiophosphorylated di-, tetra-, and hexanucleotides as substrate analogs. The complexes crystallize in tetragonal and orthorhombic space groups and have been solved by molecular replacement. The high resolution structures give a clear picture of base recognition by P1 nuclease at its two nucleotide-binding sites, especially the 1.8 Å structure of a P1-tetranucleotide complex which can be considered a P1-product complex. The observed binding modes are in agreement with a catalytic mechanism where the two closely spaced zinc ions activate the attacking water while the third, more exposed zinc ion stabilizes the leaving 03' oxyanion. Stacking as well as hydrogen bonding interactions with the base 5' to the cleaved phosphodiester bond are important elements of substrate binding and recognition. Modelling of a productive P1-substrate complex based on the solved structures suggests steric hindrance as the likely reason for the resistance of Rp-phosphorothioates and phosphorodithioates. Differences with the highly homologous nuclease S1 from Aspargillus oryzae are discussed. Proteins 32:414-424, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 124
    ISSN: 0887-3585
    Keywords: mutant T4 lysozyme ; S-2-amino-3-cyclopentylpropanoic acid ; free energy simulation ; protein stability ; packing interaction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Free energy derivatives, pictorial representation of free energy changes (PROFEC) and free energy perturbation methods were employed to suggest the modifications that may improve the stability of a mutant T4 lysozyme with a S-2-amino-3-cyclopentylpropanoic acid residue (Cpe) at position 133. The free energy derivatives and PROFEC methods were used to locate promising sites where modifications may be introduced. The effects of several candidate modifications on the enzyme's stability were analyzed by the free energy perturbation method. We found that this scheme is able to effectively suggest modifications that may increase the enzyme's stability. The modifications investigated are the introduction of a methyl, a tert-butyl or a trifluoromethyl group at the Cε2 position and a cyclopropyl group between the Cδ2 and Cε2 position on the cyclopentyl ring. The stereochemistry of the introduced groups (in the α or β configurations) was studied. Our calculations predict that the introduction of a methyl group in the α configuration or a cyclopropyl group in the β configuration will increase the stability of the enzyme; the introduction of the two groups in the other configurations and the other modifications will decrease the stability of the enzyme. The results indicate that packing interactions can strongly influence the stability of the enzyme. Proteins 32:438-458, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 125
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 107-118 
    ISSN: 0887-3585
    Keywords: protein folding ; folding intermediates ; β-sheet proteins ; structural homology ; stopped flow kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The folding mechanism of cellular retinoic acid binding protein I (CRABP I), cellular retinol binding protein II (CRBP II), and intestinal fatty acid binding protein (IFABP) were investigated to determine if proteins with similar native structures have similar folding mechanisms. These mostly β-sheet proteins have very similar structures, despite having as little as 33% sequence similarity. The reversible urea denaturation of these proteins was characterized at equilibrium by circular dichroism and fluorescence. The data were best fit by a two-state model for each of these proteins, suggesting that no significant population of folding intermediates were present at equilibrium. The native states were of similar stability with free energies (linearly extrapolated to 0 M urea, ΔGH2O) of 6.5, 8.3, and 5.5 kcal/mole for CRABP I, CRBP II, and IFABP, respectively. The kinetics of the folding and unfolding processes for these proteins was monitored by stopped-flow CD and fluorescence. Intermediates were observed during both the folding and unfolding of all of these proteins. However, the overall rates of folding and unfolding differed by nearly three orders of magnitude. Further, the spectroscopic properties of the intermediate states were different for each protein, suggesting that different amounts of secondary and/or tertiary structure were associated with each intermediate state for each protein. These data show that the folding path for proteins in the same structural family can be quite different, and provide evidence for different folding landscapes for these sequences. Proteins 33:107-118, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 126
    ISSN: 0887-3585
    Keywords: calorimetry ; proton dissociation ; enthalpy ; heat capacity ; buffer ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Enthalpy and heat capacity changes for the deprotonation of 18 buffers were calorimetrically determined in 0.1 M potassium chloride at temperatures ranging from 5 to 45°C. The values of the dissociation constant were also determined by means of potentiometric titration. The enthalpy changes for the deprotonation of buffers, except for the phosphate and glycerol 2-phosphate buffers, were found to be characterized by a linear function of temperature. The enthalpy changes for the second dissociation of phosphate and glycerol 2-phosphate where divalent anion is formed on dissociation were fitted with the second order function of temperature rather than the first order. Temperature dependence of buffer pH calculated by using the enthalpy and heat capacity changes obtained was in good agreement with the temperature variation of the pH values actually measured in the temperature range between 0 and 50°C for all the buffers studied. On the basis of the results obtained, a numeric table showing the temperature dependence of pK values for the 18 buffers is presented. Proteins 33:159-166, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 127
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 135-143 
    ISSN: 0887-3585
    Keywords: circular dichroism ; divalent cations ; nucleases ; protein folding ; protein stability ; retrovirus ; thermodynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Reverse transcriptase (RT) is a modular enzyme carrying polymerase and ribonuclease H (RNase H) activities in separable domains. Retroviral replication requires both of these activities. The RNase H domain is responsible for hydrolysis of the RNA portion of RNA•DNA hybrids, and this activity requires the presence of divalent cations (Mg2+ or Mn2+) that bind its active site. This domain is a part of a large family of homologous RNase H enzymes of which the RNase HI protein from Escherichia coli is the best characterized. Although the isolated RNase H domain from human immunodeficiency virus RT is inactive, the Moloney murine leukemia virus (MMLV) domain is active in the absence of the polymerase domain, making functional studies more accessible. Using circular dichroism spectroscopy, we characterized the stability and folding of two different fragments of MMLV RT that retain RNase H activity. The smaller fragment corresponding to the 157 C-terminal residues of RT is predominantly unfolded in the absence of divalent cations, but folding can be induced by the addition of metal. The larger fragment corresponding to the 175 C-terminal residues, however, is stably folded in the absence of metal. Thus, an 18 residue N-terminal extension outside the region homologous to E. coli RNase HI is important for the structural stability of the RNase H domain of MMLV RT. Therefore, this region should be considered part of the RNase H domain. Proteins 33:135-143, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 128
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 167-176 
    ISSN: 0887-3585
    Keywords: dichroism ; 13C NMR ; capping ; helicity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The model peptide XAAAAEAAARAAAARamide is used to examine the contributions of an N-terminal capping interaction to the conformation and stability of a helical ensemble. The reference peptide has an alanine residue at position X while the capping peptide has a serine residue at this position. The helical ensemble was characterized using circular dichroism measurements and carbonyl-carbon chemical shift measurements of selectively enriched residues. The distribution of helicity within the ensemble of the reference peptide at pH 11 and 0°C appears symmetrical, having a uniform central helix and frayed ends. This distribution is truncated at pH 6 by the repulsive electrostatic interaction between the positively charged α-amino group and the positively charged end of the helical macrodipole. The capping peptide forms a side-chain/main-chain hydrogen bond involving the serine residue and amide of alanine 4. The presence of this hydrogen bond generates a unique motif in the chemical shift profile of its helical ensemble. The conformational stabilization contributed by this hydrogen bond, although cooperatively distributed throughout the helical ensemble, is preferentially focused within the first helical turn. The stabilization provided by this hydrogen bond is able to offset the truncation of the helical ensemble generated by the repulsive electrostatic interaction observed at pH 6. Proteins 33:167-176, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 177-203 
    ISSN: 0887-3585
    Keywords: lattice model ; Monte Carlo ; protein folding ; QSPR ; genetic algorithm ; neural network ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We investigate the folding of a 125-bead heteropolymer model for proteins subject to Monte Carlo dynamics on a simple cubic lattice. Detailed study of a few sequences revealed a folding mechanism consisting of a rapid collapse followed by a slow search for a stable core that served as the transition state for folding to a near-native intermediate. Rearrangement from the intermediate to the native state slowed folding further because it required breaking native-like local structure between surface monomers so that those residues could condense onto the core. We demonstrate here the generality of this mechanism by a statistical analysis of a 200 sequence database using a method that employs a genetic algorithm to pick the sequence attributes that are most important for folding and an artificial neural network to derive the corresponding functional dependence of folding ability on the chosen sequence attributes [quantitative structure-property relationships (QSPRs)]. QSPRs that use three sequence attributes yielded substantially more accurate predictions than those that use only one. The results suggest that efficient search for the core is dependent on both the native state's overall stability and its amount of kinetically accessible, cooperative structure, whereas rearrangement from the intermediate is facilitated by destabilization of contacts between surface monomers. Implications for folding and design are discussed. Proteins 33:177-203, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 227-239 
    ISSN: 0887-3585
    Keywords: conformational search ; dead-end elimination ; A* algorithm ; protein ; side chain ; rotamer library ; protein folding ; entropy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We describe an algorithm which enables us to search the conformational space of the side chains of a protein to identify the global minimum energy combination of side chain conformations as well as all other conformations within a specified energy cutoff of the global energy minimum. The program is used to explore the side chain conformational energy surface of a number of proteins, to investigate how this surface varies with the energy model used to describe the interactions within the system and the rotamer library. Enumeration of the rotamer combinations enables us to directly evaluate the partition function, and thus calculate the side chain contribution to the conformational entropy of the folded protein. An investigation of these conformations and the relationships between them shows that most of the conformations near to the global energy minimum arise from changes in side chain conformations that are essentially independent; very few result from a concerted change in conformation of two or more residues. Some of the limitations of the approach are discussed. Proteins 33:227-239, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 131
    ISSN: 0887-3585
    Keywords: stability ; MD simulation ; analysis ; essential dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The implementation of cutinase from Fusarium solani pisi as a fat-stain removing ingredient in laundry washing is hampered by its unfolding in the presence of anionic surfactants. In this work we present molecular dynamics (MD) computer simulations on cutinase and analysis procedures to distinguish the movements related to its functional behavior (e.g., substrate binding) from those related to the unfolding of the enzyme. Two kinds of MD-simulations were performed: a simulation mimicking the thermal motion at room temperature, and several simulations in which unfolding is induced either by high temperature or by using a modified water-protein interaction potential. Essential dynamics analyses (A. Amadei et al., Proteins 17:412-425, 1993) on the simulations identify distinct regions in the molecular structure of cutinase in which the motions occur for function and initial unfolding. The unfolding in various simulations starts in a similar way, suggesting that mutations in the regions involved might stabilize the enzyme without affecting its functionality. Proteins 33:253-264, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 132
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 309-320 
    ISSN: 0887-3585
    Keywords: crosslinked hemoglobin ; protein crystallography ; T-state hemoglobin ; macromolecular modeling ; three-dimensional structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The crystal structure of human T state hemoglobin crosslinked with bis(3,5-dibromo-salicyl) sebacate has been determined at 1.9 Å resolution. The final crystallographic R factor is 0.168 with root-mean-square deviations (RMSD) from ideal bond distance of 0.018 Å. The 10-carbon sebacyl residue found in the β cleft covalently links the two βLys82 residues. The sebacyl residue assumes a zigzag conformation with cis amide bonds formed by the NZ atoms of βLys82's and the sebacyl carbonyl oxygens. The atoms of the crosslink have an occupancy factor of 1.0 with an average temperature factor for all atoms of 34 Å2. An RMSD of 0.27 for all CA's of the tetramer is observed when the crosslinked deoxyhemoglobin is compared with deoxyhemoglobin refined by using a similar protocol, 2HHD [Fronticelli et al. J. Biol. Chem. 269:23965-23969, 1994]. Thus, no significant perturbations in the tertiary or quaternary structure are introduced by the presence of the sebacyl residue. However, the sebacyl residue does displace seven water molecules in the β cleft and the conformations of the β1Lys82 and β2Lys82 are altered because of the crosslinking. The carbonyl oxygen that is part of the amide bond formed with the NZ of β2Lys82 forms a hydrogen bond with side chain of β2Asn139 that is in turn hydrogen-bonded to the side chain of β2Arg104. A comparison of the observed conformation with that modeled [Bucci et al. Biochemistry 35:3418-3425, 1996] shows significant differences. The differences in the structures can be rationalized in terms of compensating changes in the estimated free-energy balance, based on differences in exposed surface areas and the observed shift in the side-chain hydrogen-bonding pattern involving β2Arg104, β2Asn139, and the associated sebacyl carbonyl group. Proteins 30:309-320, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 133
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 357-371 
    ISSN: 0887-3585
    Keywords: membrane ; protein ; structure ; prediction ; hydrophobicity ; computer ; magainin ; melittin ; 18A ; M2δ ; PGLa ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The lipid bilayer is crucial for the folding of integral membrane proteins. This article presents an empirical method to account for water-lipid interfaces in the insertion of molecules interacting with bilayers. The interactions between the molecule and the bilayer are described by restraint functions designed to mimic the membrane effect. These functions are calculated for each atom and are proportional to the accessible surface of the latter. The membrane is described as a continuous medium whose properties are varying along the axis perpendicular to the bilayer plane. The insertion is analyzed by a Monte Carlo procedure applied to the restraint functions. The method was successfully applied to small α peptides of known configurations. It provides insights of the behaviors of the peptide dynamics that cannot be obtained with statistical approaches (e.g., hydropathy analysis). Proteins 30:357-371, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 381-387 
    ISSN: 0887-3585
    Keywords: serum amyloid A ; fluorescence ; circular dichroism ; acute phase ; denaturation ; nuclease ; amyloidosis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We developed a recombinant DNA system to overexpress a fusion protein between the small, minimally soluble acute phase serum protein, serum amyloid A (SAA), and the bacterial enzyme staphylococcal nuclease (SN). This fusion protein is very soluble and is immunoreactive to polyclonal anti-SAA antibodies. Tryptophan fluorescence shows smooth denaturation curves for the fusion protein in guanidinium HCl or potassium thiocyanate. Fluorescence also indicates that only a single tryptophan residue (of the four present) is accessible to iodide quenching and, presumably, is exposed on the surface of the fusion protein. Circular dichroism (CD) shows a significant signal indicating α-helix, which can be attributed to the SAA portion of the molecule; these are the first CD spectral data available for SAA. pH titration shows persistence of helix domains for the fusion protein at pH 3.0, in contrast to the denaturation of SN under the same conditions. (The entire fusion protein shows a random coil pattern below pH 3.0.) By exploiting the structural and solubility properties of SN, this fusion protein has provided the first structural data about SAA - the precursor of the amyloid deposits in secondary amyloidosis. This fusion protein should be useful for further physical and physiologic studies of SAA. Proteins 30:381-387, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 135
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 475-494 
    ISSN: 0887-3585
    Keywords: protein assembly ; protein structure ; protein reduced models ; lattice models ; Monte Carlo simulations ; fold prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A new, efficient method for the assembly of protein tertiary structure from known, loosely encoded secondary structure restraints and sparse information about exact side chain contacts is proposed and evaluated. The method is based on a new, very simple method for the reduced modeling of protein structure and dynamics, where the protein is described as a lattice chain connecting side chain centers of mass rather than Cαs. The model has implicit built-in multibody correlations that simulate short- and long-range packing preferences, hydrogen bonding cooperativity and a mean force potential describing hydrophobic interactions. Due to the simplicity of the protein representation and definition of the model force field, the Monte Carlo algorithm is at least an order of magnitude faster than previously published Monte Carlo algorithms for structure assembly. In contrast to existing algorithms, the new method requires a smaller number of tertiary restraints for successful fold assembly; on average, one for every seven residues as compared to one for every four residues. For example, for smaller proteins such as the B domain of protein G, the resulting structures have a coordinate root mean square deviation (cRMSD), which is about 3 Å from the experimental structure; for myoglobin, structures whose backbone cRMSD is 4.3 Å are produced, and for a 247-residue TIM barrel, the cRMSD of the resulting folds is about 6 Å. As would be expected, increasing the number of tertiary restraints improves the accuracy of the assembled structures. The reliability and robustness of the new method should enable its routine application in model building protocols based on various (very sparse) experimentally derived structural restraints. Proteins 32:475-494, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 459-474 
    ISSN: 0887-3585
    Keywords: protein inhibitors ; serine proteinases ; protein loop ; canonical conformation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Canonical loops of protein inhibitors of serine proteinases occur in proteins having completely different folds. In this article, conformations of the loops have been analyzed for inhibitors belonging to 10 structurally different families. Using deviation in Cα-Cα distances as a criterion for loop similarity, we found that the P3-P3′ segment defines most properly the length of the loop. When conformational differences among loops of individual inhibitors were compared using root mean square deviation (rmsd) in atomic coordinates for all main chain atoms (Δr method) and rmsd operating in main chain torsion angles (Δt method), differences of up to 2.1 Å and 72.3°, respectively, were observed. Such large values indicate significant conformational differences among individual loops. Nevertheless, the overall geometry of the inhibitor-proteinase interaction is very well preserved, as judged from the similarity of Cα-Cα distances between Cα of catalytic Ser and Cα of P3-P3′ residues in various enzyme-inhibitor complexes. The mode of interaction is very well preserved both in the chymotrypsin and subtilisin families, as distances calculated for subtilisin-inhibitor complexes are almost always within the range of those for chymotrypsin-inhibitor complexes. Complex formation leads to conformational changes of up to 160° for χ1 angle. Side chains of residue P1 and P2′ adopt in different complexes a similar orientation (χ1 angle = -60° and -180°, respectively). To check whether the canonical conformation can be found among non-proteinase-inhibitor Brookhaven Protein Data Bank structures, two selection criteria - the allowed main chain dihedral angles and Cα-Cα distances for the P3-P3′ segment - were applied to all these structures. This procedure detected 132 unique hexapeptide segments in 121 structurally and functionally unrelated proteins. Partial preferences for certain amino acids occurring at particular positions in these hexapeptides could be noted. Further restriction of this set to hexapeptides with a highly exposed P1 residue side chain resulted in 40 segments. The possibility of complexes formation between these segments and serine proteinases was ruled out in molecular modeling due to steric clashes. Several structural features that determine the canonical conformation of the loop both in inhibitors and in other proteins can be distinguished. They include main chain hydrogen bonds both within the P3-P3′ segment and with the scaffold region, P3-P4 and P3′-P4′ hydrophobic interactions, and finally either hydrophobic or polar interactions involving the P1′ residue. Proteins 32:459-474, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 137
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 18-29 
    ISSN: 0887-3585
    Keywords: molecular cavities ; packing defects ; Delaunay complex ; alpha shape ; structural solvent in proteins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The structures of proteins are well-packed, yet they contain numerous cavities which play key roles in accommodating small molecules, or enabling conformational changes. From high-resolution structures it is possible to identify these cavities. We have developed a precise algorithm based on alpha shapes for measuring space-filling-based molecular models (such as van der Waals, solvent accessible, and molecular surface descriptions). We applied this method for accurate computation of the surface area and volume of cavities in several proteins. In addition, all of the atoms/residues lining the cavities are identified. We use this method to study the structure and the stability of proteins, as well as to locate cavities that could contain structural water molecules in the proton transport pathway in the membrane protein bacteriorhodopsin. Proteins 33:18-29, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 515-522 
    ISSN: 0887-3585
    Keywords: sugar ; acetamido group ; mimicry ; inhibition ; lysozyme ; CDR loop ; VHH ; heavy-chain immunoglobulin ; solvent accessible surface area ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Whereas antibodies have demonstrated the ability to mimic various compounds, classic heavy/light-chain antibodies may be limited in their applications. First, they tend not to bind enzyme active site clefts. Second, their size and complexity present problems in identifying key elements for binding and in using these elements to produce clinically valuable compounds. We have previously shown how cAb-Lys3, a single variable domain fragment derived from a lysozyme-specific camel antibody naturally lacking light chains, overcomes the first limitation to become the first antibody structure observed penetrating an enzyme active site. We now demonstrate how cAb-Lys3 mimics the oligosaccharide substrate functionally (inhibition constant for lysozyme, 50 nM) and structurally (lysozyme buried surface areas, hydrogen bond partners, and hydrophobic contacts are similar to those seen in sugar-complexed structures). Most striking is the mimicry by the antibody complementary determining region 3 (CDR3) loop, especially Ala104, which mimics the subsite C sugar 2-acetamido group; this group has previously been identified as a key feature in binding lysozyme. Comparative simplicity, high affinity and specificity, potential to reach and interact with active sites, and ability to mimic substrate suggest that camel heavy-chain antibodies present advantages over classic antibodies in the design, production, and application of clinically valuable compounds. Proteins 32:515-522, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 139
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 39-48 
    ISSN: 0887-3585
    Keywords: antibody ; antigen ; electrostatics ; binding ; finite difference ; Poisson-Boltzmann ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The change in free energy of binding of hen egg white lysozyme (HEL) to the antibody HyHel-10 arising from ten point mutations in HEL (D101K, D101G, K96M, K97D, K97G, K97G, R21E, R21K, W62Y, and W63Y) was calculated using a combination of the finite difference Poisson-Boltzmann method for the electrostatic contribution, a solvent accessible surface area term for the non-polar contribution, and rotamer counting for the sidechain entropy contribution. Comparison of experimental and calculated results indicate that because of pKa shifts in some of the mutated residues, primarily those involving Aspartate or Glutamate, proton uptake or release occurs in binding. When this effect was incorporated into the binding free energy calculations, the agreement with experiment improved significantly, and resulted in a mean error of about 1.9 kcal/mole. Thus these calculations predict that there should be a significant pH dependence to the change in binding caused by these mutations. The other major contributions to binding energy changes comes from solvation and charge charge interactions, which tend to oppose each other. Smaller contributions come from nonpolar interactions and sidechain entropy changes. The structures of the HyHel-10-HEL complexes with mutant HEL were obtained by modeling, and the effect of the modeled structure on the calculations was also examined. “Knowledge based” modeling and automatic generation of models using molecular mechanics produced comparable results. Proteins 33:39-48, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 140
    ISSN: 0887-3585
    Keywords: lactoferrin ; proteinase K ; complex, hydrolysis ; structure ; inhibitor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Lactoferrin is an iron binding glycoprotein with a molecular weight of 80 kDa. The molecule is divided into two lobes representing the N-terminal and C-terminal halves of the polypeptide chain, each containing an iron binding site. The serine proteinases such as trypsin, chymotrypsin, and pepsin hydrolyze lactoferrin into two unequal halves while proteinase K divides this protein into two equal halves. In the first step of hydrolysis by proteinase K, the C- and N-lobes, each having a molecular weight of approximately 40 kDa, are generated. In the next step, the lobes are further hydrolyzed into small molecular weight peptides. The proteinase K isolated from the hydrolyzed product does not show enzymatic activity suggesting that the enzyme is inhibited. Furthermore, the hydrolysis experiments on N-lobe and C-lobe showed that the inhibitory fragment came from the C-lobe. The purified lactoferrin fragment was found to be a decapeptide with an amino acid sequence of H2N-Val-Ala-Gln-Gly-Ala-Ala-Gly-Leu-Ala-COOH. The complex formed between proteinase K and lactoferrin fragment was crystallized by microdialysis. The crystals belonged to the monoclinic space group P21with cell dimensions a = 44.4 Å, b = 38.6 Å, c = 79.2 Å, β = 105.8o and Z = 2. The crystal structure has been determined at 2.4 Å resolution. It has been refined to an R factor of 0.163 for 9044 reflections. The Lf-fragment forms several intermolecular interactions with proteinase K. The Ser-224 Oγ and His-57 Nε2 move away to a distance of 3.68 Å in the complex. In the crystal structure, Gln-3I (I indicates inhibitor i.e., lactoferrin fragment) is involved in a direct intermolecular interaction with a symmetry related proteinase K molecule through a strong hydrogen bond with Asp-254. The mode of intermolecular interactions in the complex conformational features of the enzyme and placement of the fragment with respect to the enzyme resemble with the molecular complex of proteinase K with its natural inhibitor PKI3 from wheat. Proteins 33:30-38, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 88-96 
    ISSN: 0887-3585
    Keywords: fold classification ; substructures ; Dali ; protein families ; structural similarity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The rapid growth in the number of experimentally determined three-dimensional protein structures has sharpened the need for comprehensive and up-to-date surveys of known structures. Classic work on protein structure classification has made it clear that a structural survey is best carried out at the level of domains, i.e., substructures that recur in evolution as functional units in different protein contexts. We present a method for automated domain identification from protein structure atomic coordinates based on quantitative measures of compactness and, as the new element, recurrence. Compactness criteria are used to recursively divide a protein into a series of successively smaller and smaller substructures. Recurrence criteria are used to select an optimal size level of these substructures, so that many of the chosen substructures are common to different proteins at a high level of statistical significance. The joint application of these criteria automatically yields consistent domain definitions between remote homologs, a result difficult to achieve using compactness criteria alone. The method is applied to a representative set of 1,137 sequence-unique protein families covering 6,500 known structures. Clustering of the resulting set of domains (substructures) yields 594 distinct fold classes (types of substructures). The Dali Domain Dictionary (http://www.embl-ebi.ac.uk/dali) not only provides a global structural classification, but also a comprehensive description of families of protein sequences grouped around representative proteins of known structure. The classification will be continuously updated and can serve as a basis for improving our understanding of protein evolution and function and for evolving optimal strategies to complete the map of all natural protein structures. Proteins 33:88-96, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 142
    ISSN: 0887-3585
    Keywords: antigenic peptides ; class I MHC molecules ; HLA-A2 complexes ; hydrogen bonds ; protein structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The crystal structures of class I major histocompatibility complex (MHC) molecules complexed with antigenic peptides revealed a network of hydrogen bonds between the charged amino- and carboxyl-termini of the peptides and conserved MHC residues at both ends of the peptide binding site. These interactions were shown to contribute substantially to the stability of class I MHC/peptide complexes by thermal denaturation studies using synthetic peptides in which either the amino- or carboxyl-terminal group is substituted by a methyl group. Here we report crystal structures of HLA-A*0201 complexed with these terminally modified synthetic peptides showing that they adopt the same bound conformation as antigenic peptides. A number of variations in peptide conformation were observed for the terminally modified peptides, including in one case, a large conformational difference in four central peptide residues that is apparently caused by the lattice contact. This is reminiscent of the way binding a T-cell receptor changed the conformation of central residues of an MHC-bound peptide. The structures determined identify which conserved hydrogen bonds are eliminated in terminally substituted peptides and suggest an increased energetic importance of the interactions at the peptide termini for MHC-peptide stability. Proteins 33:97-106, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 143
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 145-158 
    ISSN: 0887-3585
    Keywords: protein titration ; molecular dynamics ; average conformation ; continuum electrostatistics ; protein dielectric constant ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Several methods for including the conformational flexibility of proteins in the calculation of titration curves are compared. The methods use the linearized Poisson-Boltzmann equation to calculate the electrostatic free energies of solvation and are applied to bovine pancreatic trypsin inhibitor (BPTI) and hen egg-white lysozyme (HEWL). An ensemble of conformations is generated by a molecular dynamics simulation of the proteins with explicit solvent. The average titration curve of the ensemble is calculated in three different ways: an average structure is used for the pKa calculation; the electrostatic interaction free energies are averaged and used for the pKa calculation; and the titration curve for each structure is calculated and the curves are averaged. The three averaging methods give very similar results and improve the pKa values to approximately the same degree. This suggests, in contrast to implications from other work, that the observed improvement of pKa values in the present studies is due not to averaging over an ensemble of structures, but rather to the generation of a single properly averaged structure for the pKa calculation. Proteins 33:145-158, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 358-366 
    ISSN: 0887-3585
    Keywords: homologous proteins ; superfamilies ; sequence conservation ; protein structure ; protein evolution ; sequence-structure relationships ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In order to study structural aspects of sequence conservation in families of homologous proteins, we have analyzed structurally aligned sequences of 585 proteins grouped into 128 homologous families. The conservation of a residue in a family is defined as the average residue similarity in a given position of aligned sequences. The residue similarities were expressed in the form of log-odd substitution tables that take into account the environments of amino acids in three-dimensional structures. The protein core is defined as those residues that have less then 7% solvent accessibility. The density of a protein core is described in terms of atom packing, which is investigated as a criterion for residue substitution and conservation. Although there is no significant correlation between sequence conservation and average atom packing around nonpolar residues such as leucine, valine and isoleucine, a significant correlation is observed for polar residues in the protein core. This may be explained by the hydrogen bonds in which polar residues are involved; the better their protection from water access the more stable should be the structure in that position. Proteins 33:358-366, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 145
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 320-328 
    ISSN: 0887-3585
    Keywords: structural similarity ; optimal superposition ; common substructure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In analysis, comparison and classification of conformations of proteins, a common computational task involves extractions of similar substructures. Structural comparisons are usually based on either of two measures of similarity: the root-mean-square (r.m.s.) deviation upon optimal superposition, or the maximal element of the difference distance matrix. The analysis presented here clarifies the relationships between different measures of structural similarity, and can provide a basis for developing algorithms and software to extract all maximal common well-fitting substructures from proteins.Given atomic coordinates of two proteins, many methods have been described for extracting some substantial (if not provably maximal) common substructure with low r.m.s. deviation. This is a relatively easy task compared with the problem addressed here, i.e., that of finding all common substructures with r.m.s. deviation less than a prespecified threshold. The combinatorial problems associated with similar subset extraction are more tractable if expressed in terms of the maximal element of the difference distance matrix than in terms of the r.m.s. deviation. However, it has been difficult to correlate these alternative measures of structural similarity. The purpose of this article is to make this connection.We first introduce a third measure of structural similarity: the maximum distance between corresponding pairs of points after superposition to minimize this value. This corresponds to fitting in the Chebyshev norm. Properties of Chebyshev superposition are derived.We describe relationships between the r.m.s. and minimax (Chebyshev) deviations upon optimal superposition, and between the Chebyshev deviation and the maximal element of the difference distance matrix. Combining these produces a relationship between the r.m.s. deviation upon optimal superposition and the maximal element of the difference distance matrix. Based on these results, we can apply algorithms and software for finding subsets of the difference distance matrix for which all elements are less than a specified bound, either to select only subsets for which the r.m.s.deviation is less than or equal to a specified threshold, or to select subsets that include all subsets for which the r.m.s. deviation is less than or equal to a threshold. Proteins 33:320-328, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 146
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 367-382 
    ISSN: 0887-3585
    Keywords: ligand-protein docking ; molecular recognition ; tabu search ; empirical scoring function ; binding affinity prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: This article describes the implementation of a new docking approach. The method uses a Tabu search methodology to dock flexibly ligand molecules into rigid receptor structures. It uses an empirical objective function with a small number of physically based terms derived from fitting experimental binding affinities for crystallographic complexes. This means that docking energies produced by the searching algorithm provide direct estimates of the binding affinities of the ligands. The method has been tested on 50 ligand-receptor complexes for which the experimental binding affinity and binding geometry are known. All water molecules are removed from the structures and ligand molecules are minimized in vacuo before docking. The lowest energy geometry produced by the docking protocol is within 1.5 Å root-mean square of the experimental binding mode for 86% of the complexes. The lowest energies produced by the docking are in fair agreement with the known free energies of binding for the ligands. Proteins 33:367-382, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 408-416 
    ISSN: 0887-3585
    Keywords: protein folding ; potential energy curve ; two state model ; semi-empirical calculation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We have calculated the free energy of a spherical model of a protein or part of a protein generated in the way of protein folding. Two spherical models are examined; one is a homogeneous model consisting of only one residue type - hydrophobic. The other is a heterogeneous model consisting of two residue types - strong hydrophobic and weak hydrophobic. Both models show a folding transition state, and the latter model reproduces the trend of the experimental folded-unfolded energy change. The heterogeneous model suggests that in the folding process of a protein of more than 70 residues, a specific region of the protein folds first to form a stable region, then the other residues follow the folding process. The energy landscape of folding of a small protein is approximately a funnel model, whereas a flatter energy landscape is suggested for larger proteins of more than 55-70 residues. Proteins 33:408-416, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 148
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 383-395 
    ISSN: 0887-3585
    Keywords: glycosidases ; protein structure prediction ; correlated mutations ; sequence space ; phylogenic relationships ; threading ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A structural model is presented for family 32 of the glycosyl-hydrolase enzymes based on the beta-propeller fold. The model is derived from the common prediction of two different threading methods, TOPITS and THREADER. In addition, we used a correlated mutation analysis and prediction of active-site residues to corroborate the proposed model. Physical techniques (circular dichroism and differential scanning calorimetry) confirmed two aspects of the prediction, the proposed all-beta fold and the multi-domain structure. The most reliable three-dimensional model was obtained using the structure of neuraminidase (1nscA) as template. The analysis of the position of the active site residues in this model is compatible with the catalytic mechanism proposed by Reddy and Maley (J. Biol. Chem. 271:13953-13958, 1996), which includes three conserved residues, Asp, Glu, and Cys. Based on this analysis, we propose the participation of one more conserved residue (Asp 162) in the catalytic mechanism. The model will facilitate further studies of the physical and biochemical characteristics of family 32 of the glycosyl-hydrolases. Proteins 33:383-395, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 430-443 
    ISSN: 0887-3585
    Keywords: pyrimidine biosynthesis ; protein crystallography ; allostery ; long-range interactions ; site-directed mutagenesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Tyr 165 in the catalytic subunit of Escherichia coli aspartate transcarbamoylase (ATCase, EC 2.1.3.2) forms an intersubunit hydrogen bond in the T state with Glu 239 in the 240s loop of a second catalytic subunit, which is broken in the T to R transition. Substitution of Tyr 165 by Phe lowers substrate affinity by approximately an order of magnitude and alters the pH profile for enzyme function. We have determined the crystal structure of Y165F at 2.4 Å resolution by molecular replacement, using a wild-type T state structure as the probe, and refined it to an R value of 25.2%. The Y165F mutation induces a global conformational change that is in the opposite direction to the T to R transition and therefore results in an extreme T state. The two catalytic trimers move closer by ∼0.14 Å and rotate by ∼0.2°, in the opposite direction to the T→R rotation; the two domains of each catalytic chain rotate by ∼2.1°, also in the opposite direction to the T→R transition; and the 240s loop adopts a new conformation. Residues 229 to 236 shift by ∼2.4 Å so that the active site is more open. Residues 237 to 244 rotate by ∼24.1°, altering interactions within the 240s loop and at the C1-C4 and C1-R4 interfaces. Arg 167, a key residue in domain closure and interactions with L-Asp, swings out from the active site to interact with Tyr 197. This crystal structure is consistent with the functional properties of Y165F, expands our knowledge of the conformational repertoire of ATCase, and indicates that the canonical T state does not represent an extreme. Proteins 33:430-443, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 370-382 
    ISSN: 0887-3585
    Keywords: NMR structure refinement ; correlated/collective motion ; essential dynamics analysis ; PH domain ; single-stranded DNA binding protein ; gene V protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Large concerted motions of proteins which span its “essential space,” are an important component of protein dynamics. We investigate to what extent structure ensembles generated with standard structure calculation techniques such as simulated annealing can capture these motions by comparing them to long-time molecular dynamics (MD) trajectories. The motions are analyzed by principal component analysis and compared using inner products of eigenvectors of the respective covariance matrices. Two very different systems are studied, the β-spectrin PH domain and the single-stranded DNA binding protein (ssDBP) from the filamentous phage Pf3. A comparison of the ensembles from NMR and MD shows significant overlap of the essential spaces, which in the case of ssDBP is extraordinarily high. The influence of variations in the specifications of distance restraints is investigated. We also study the influence of the selection criterion for the final structure ensemble on the definition of mobility. The results suggest a modified criterion that improves conformational sampling in terms of amplitudes of correlated motion. Proteins 31:370-382, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 383-390 
    ISSN: 0887-3585
    Keywords: time-resolved small-angle X-ray scattering ; allosterism ; domain closure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Time-resolved small-angle X-ray scattering (TR-SAXS) was used to monitor the structural changes that occur upon the binding of the natural substrates to a mutant version of the allosteric enzyme aspartate transcarbamoylase from Escherichia coli, in which the creation of a critical link stabilizing the R state of the enzyme is hindered. Previously, SAXS experiments at equilibrium showed that the structures of the unligated mutant enzyme and the mutant enzyme saturated with a bisubstrate analog are indistinguishable from the T and R state structures, respectively, of the wild-type enzyme (Tauc et al., Protein Sci. 3:1998-2004, 1994). However, as opposed to the wild-type enzyme, the combination of one substrate, carbamoyl phosphate, and succinate, an analog of aspartate, did not convert the mutant enzyme into the R state. By using TR-SAXS we have been able to study the transient steady-state during catalysis using the natural substrates rather than the nonreactive substrate analogs. The steady-state in the presence of saturating amount of substrates is a mixture of 60% T and 40% R structures, which is further converted entirely to R in the additional presence of ATP. These results provide a structural explanation for the reduced cooperativity observed with the mutant enzyme as well as for the stimulation by ATP at saturating concentrations of substrates. They also illustrate the crucial role played by domain motions and quaternary-structure changes for both the homotropic and heterotropic aspects of allostery. Proteins 31:383-390, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 2-33 
    ISSN: 0887-3585
    Keywords: chevron plot ; energy landscape ; folding funnel ; kinetic trap ; lattice models ; non-Arrhenius behavior ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We use two simple models and the energy landscape perspective to study protein folding kinetics. A major challenge has been to use the landscape perspective to interpret experimental data, which requires ensemble averaging over the microscopic trajectories usually observed in such models. Here, because of the simplicity of the model, this can be achieved. The kinetics of protein folding falls into two classes: multiple-exponential and two-state (single-exponential) kinetics. Experiments show that two-state relaxation times have “chevron plot” dependences on denaturant and non-Arrhenius dependences on temperature. We find that HP and HP+ models can account for these behaviors. The HP model often gives bumpy landscapes with many kinetic traps and multiple-exponental behavior, whereas the HP+ model gives more smooth funnels and two-state behavior. Multiple-exponential kinetics often involves fast collapse into kinetic traps and slower barrier climbing out of the traps. Two-state kinetics often involves entropic barriers where conformational searching limits the folding speed. Transition states and activation barriers need not define a single conformation; they can involve a broad ensemble of the conformations searched on the way to the native state. We find that unfolding is not always a direct reversal of the folding process. Proteins 30:2-33, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 35 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 49-60 
    ISSN: 0887-3585
    Keywords: kohonen network ; mitochondrial processing peptidase (MPP) ; mitochondrial intermediate peptidase (MIP) ; neural network ; protein import ; sequence motif ; mitochondrial targeting ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Cleavage sites in nuclear-encoded mitochondrial protein targeting peptides (mTPs) from mammals, yeast, and plants have been analysed for characteristic physicochemical features using statistical methods, perceptrons, multilayer neural networks, and self-organizing feature maps. Three different sequence motifs were found, revealing loosely defined arginine motifs with Arg in positions -10, -3, and -2. A self-organizing feature map was able to cluster these three types of endopeptidase target sites but did not identify any species-specific characteristics in mTPs. Neural networks were used to define local sequence features around precursor cleavage sites. Proteins 30:49-60, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 109-112 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 136-143 
    ISSN: 0887-3585
    Keywords: protein design ; protein structure ; circular dichroism ; trifluoroethanol ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Inspired by the Paracelsus Challenge of Rose and Creamer (Proteins 19:1-3, 1994), we have designed a protein sequence that is 50% identical to an all-helical protein but is intended to fold into a largely β-sheet structure. Rather than attempt a de novo design, our strategy was to construct a hybrid sequence based on a helical “parent” protein (434 Cro) and a “target” protein with the desired fold (the B1 domain of protein G). The hybrid sequence (Crotein-G) is 50% identical to 434 Cro but is also 62% identical to the B1 domain of protein G. We also created a variant of Crotein-G (ZCrotein-G) that contains a potential His3Cys1 zinc binding site. At low protein concentrations and in the presence of 20% 2,2,2-trifluoroethanol (TFE) (v/v), the circular dichroism spectra of the designed proteins are distinct from that of 434 Cro and similar to that of the B1 domain of protein G. However, the proteins fail to denature in a cooperative manner. Furthermore, aggregation occurs at moderate protein concentrations or in the absence of TFE. Addition of zinc to ZCrotein-G does not promote structure formation. In summary, 434 Cro has been altered to something that may resemble the B1 domain of protein G, but the protein does not adopt a native structure. Proteins 30:136-143, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 168-176 
    ISSN: 0887-3585
    Keywords: denaturation kinetics ; irreversible conformational changes ; metastable states ; folding temperature ; lattice model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Denaturation of model proteinlike molecules at the liquid-solid interface is simulated over a wide temperature range by employing the lattice Monte Carlo technique. Initially, the molecule containing 27 monomers of two types (A and B) is assumed to be adsorbed in the native folded state (a 3 × 3 × 3 cube) so that one of its sides is in contact with the surface. The details of the denaturation kinetics are found to be slightly dependent on the choice of the side, but the main qualitative conclusions hold for all the sides. In particular, the kinetics obey approximately the conventional first-order law at T 〉 Tc (Tc is the collapse temperature for solution). With decreasing temperature, below Tc but above Tf (Tf is the folding temperature for solution), deviations appear from the first-order kinetics. For the most interesting temperatures, that is, below Tf, the denaturation kinetics are shown to be qualitatively different from the conventional ones. In particular, the denaturation process occurs via several intermediate steps due to trapping in metastable states. Mathematically, this means that (i) the transition to the denatured state of a given molecule is nonexponential, and (ii) the denaturation process cannot be described by a single rate constant kr. One should rather introduce a distribution of values of this rate constant (different values of kr correspond to the transitions to the altered state via different metastable states). Proteins 30:168-176, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 265-284 
    ISSN: 0887-3585
    Keywords: NMR ; order parameters ; B-factors ; EF-hands ; hydrogen bonds ; hydration ; cooperativity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Molecular dynamics simulations based on detailed atomic models are used to examine the structure and dynamics of calbindin D9k, a protein possessing a pair of EF-hands able to bind two calcium ions in a cooperative fashion. Trajectories for the apo and singly (in the C-terminal binding site) and doubly loaded structures are generated and analyzed. Each system is solvated in a 27 Å radius sphere of 2,285 explicit water molecules. The influence of the remaining bulk is incorporated through a stochastic boundary potential including a solvent reaction field. Long-range electrostatic interactions are treated with a special method and are not truncated. The average structural and dynamic properties upon calcium binding are studied at the atomic level to gain insight into the cooperative interactions between the two binding sites. Results from the trajectories are compared with data from nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. NMR 15N and 13Cα backbone relaxation order parameters and crystallographic B-factors are calculated. Generally, there is a good qualitative agreement between calculated and observed properties. Results confirm that the doubly loaded state is closer, both structurally and dynamically, to the singly loaded state than either of these is to the apo state. It is observed that both hydrogen bonding and the packing of nonpolar side chains contribute to the coupling between the calcium binding sites. Two backbone-to-backbone hydrogen bonds linking the calcium-binding EF-hands (Leu23-O · · · HN-Val61 and Val61-O · · · HN-Leu23) are sensitive to the state of occupancy. Residues Leu23 and Val61 exhibit the smallest rms fluctuations of the entire protein in the D state. In addition, the van der Waals interaction of Val61 with the rest of the protein varies with the calcium-binding state. Proteins 33:265-284, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 295-310 
    ISSN: 0887-3585
    Keywords: molecular recognition ; Monte Carlo docking ; dead-end-elimination ; rotamer library ; correlated energy landscapes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present a computational approach for predicting structures of ligand-protein complexes and analyzing binding energy landscapes that combines Monte Carlo simulated annealing technique to determine the ligand bound conformation with the dead-end elimination algorithm for side-chain optimization of the protein active site residues. Flexible ligand docking and optimization of mobile protein side-chains have been performed to predict structural effects in the V32I/I47V/V82I HIV-1 protease mutant bound with the SB203386 ligand and in the V82A HIV-1 protease mutant bound with the A77003 ligand. The computational structure predictions are consistent with the crystal structures of these ligand-protein complexes. The emerging relationships between ligand docking and side-chain optimization of the active site residues are rationalized based on the analysis of the ligand-protein binding energy landscape. Proteins 33:295-310, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 159
    ISSN: 0887-3585
    Keywords: 2D NMR spectroscopy ; assignment ; relaxation ; protein mutant ; disulfide bonds ; 13C natural abundance ; 15N isotope labeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Covalent linkages such as disulfide bonds are important for the stabilization of proteins. In the present NMR study we compare the structure and the dynamics of the single disulfide-deficient variant C45A/C73A of the α-amylase inhibitor tendamistat and the wild-type protein, which contains two disulfide bonds (C11-C27 and C45-C73). Complete proton assignment was achieved by standard homonuclear 2D techniques for the variant. Chemical shift differences, intra-strand NOE effects and protected amide proton were used to compare the connectivity of the secondary structure elements of variant and wild-type. Dynamic properties of the wild-type protein were studied by 13Cα heteronuclear NOE experiments with carbon in natural abundance. 15N isotope labeling was necessary to obtain the relaxation parameters of the variant, because of sample degradation. The 15N resonance assignment was achieved by a 15N 3D-NOESY-HMQC. Removal of the C45-C73 bond by the C45A/C73A mutation has no influence upon the β-barrel structure of tendamistat beside very local changes at the mutation site. The relaxation data revealed only subtle differences between variant and wild-type on a subnanosecond time scale. Only the N-terminus and G62 in the connecting loop between the anti-parallel β-sheets showed an increased mobility. The results are discussed in respect to thermodynamic stability and the secretion efficiency of tendamistat. Proteins 33:285-294, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 160
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 319-319 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 311-317 
    ISSN: 0887-3585
    Keywords: alphavirus ; capsid structure ; budding ; dioxane ; assembly ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Alphavirus budding from the plasma membrane is initiated by the specific interaction of the nucleocapsid with the cytoplasmic domain of the glycoprotein E2. It was proposed (Lee et al., Structure 4:531-541, 1996) that binding of the capsid protein residues 108 to 110 (the “N-terminal arm” residues) to a hydrophobic pocket on the surface of the neighboring capsid protein in the crystal structure mimics the binding of the E2 C-terminal residues into this pocket. In addition, structural comparisons of wild-type and mutant Sindbis virus capsid protein (SCP) and Semliki Forest virus capsid protein suggested that budding is associated with a switch between two conformations of the hydrophobic pocket. To test the proposed mechanism, SCP(114-264), which is missing the N-terminal arm, was crystallized to examine the pocket conformation when the pocket is empty. However, the pocket was occupied by dioxane molecules from the crystallization solution. The pocket conformation was the same as that when it was occupied by the N-terminal arm, demonstrating that the pocket favors binding ligands of appropriate size and shape. Proteins 33:311-317, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 329-342 
    ISSN: 0887-3585
    Keywords: families ; solvent accessibility ; substitutions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The 3D structural comparison of families of divergent homologous domains revealed two main populations of hydrophobic amino acids, one with a low and the other with a significantly higher mean solvent accessibility, allowing two regions of the core of protein globular domains to be distinguished. The side chains of hydrophobic amino acids in topologically conserved positions (positions in the structural alignment where only hydrophobic amino acids are found), which we call topohydrophobic positions, are considerably less dispersed than those of the other amino acids (hydrophobic or not). Mean distances between gravity centers of amino acids in topohydrophobic positions are significantly shorter than those for non-topohydrophobic positions and show that the corresponding amino acids are almost all in direct contact in the inner core of globular domains. This study also showed that the small number of topohydrophobic positions is a characteristic of the structural differences between proteins of a family. This criterion is independent of the sequence identity between the sequences and of the root-mean-square distance between their corresponding structures. Using sensitive sequence alignment processes it will be possible, for many protein families, to identify topohydrophobic positions from sequences only. Proteins 33:329-342, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 163
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 343-357 
    ISSN: 0887-3585
    Keywords: α-helix ; polyalanine ; polyglutamine ; folding ; NEIMO ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The kinetics of α-helix formation in polyalanine and polyglycine eicosamers (20-mers) were examined using torsional-coordinate molecular dynamics (MD). Of one hundred fifty-five MD experiments on extended (Ala)20 carried out for 0.5 ns each, 129 (83%) formed a persistent α-helix. In contrast, the extended state of (Gly)20 only formed a right-handed α-helix in two of the 20 MD experiments (10%), and these helices were not as long or as persistent as those of polyalanine.These simulations show helix formation to be a competition between the rates of (a) forming local hydrogen bonds (i.e. hydrogen bonds between any residue i and its i + 2, i + 3, i + 4, or i + 5th neighbor) and (b) forming nonlocal hydrogen bonds (HBs) between residues widely separated in sequence.Local HBs grow rapidly into an α-helix; but nonlocal HBs usually retard helix formation by “trapping” the polymer in irregular, “balled-up” structures. Most trajectories formed some nonlocal HBs, sometimes as many as eight. But, for (Ala)20, most of these eventually rearranged to form local HBs that lead to α-helices. A simple kinetic model describes the rate of converting nonlocal HBs into α-helices.Torsional-coordinate MD speeds folding by eliminating bond and angle degrees of freedom and reducing dynamical friction. Thus, the observed 210 ps half-life for helix formation is likely to be a lower bound on the real rate. However, we believe the sequential steps observed here mirror those of real systems. Proteins 33:343-357, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 164
    ISSN: 0887-3585
    Keywords: acid denatured state ; ANS fluorescence ; Arrhenius plot ; kinetics ; molten globule intermediate ; TFE denatured state ; protein folding ; human stefin B ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: It has been shown that human stefin B exhibits molten globule intermediates when denatured by acid or GuHCl. In the presence of TFE, it transforms into a highly helical state. In our first study on its folding mechanism (Žerovnik et al., Proteins 32:296-303), the kinetics measured by circular dichroism (CD) and fluorescence were correlated. In the present work the kinetics of folding were monitored by tyrosine fluorescence, ANS fluorescence, and, for certain reactions, far ultraviolet (UV) CD. The folding was started from the unfolded state in 3.45 M GuHCl, the acid denatured state at pH 1.8 ± 0.2, an acid molten globule intermediate I1 (pH 3.3 ± 0.1, low salt), a more structured acid molten globule intermediate I2 (pH 3.3 ± 0.1, 0.42 M NaCl), and the TFE state (pH 3.3 ± 0.1, 42% TFE). It has been found that all denatured states, including GuHCl, TFE, acid denatured and acid molten globule intermediate I1, fold with the same kinetics, provided that the final conditions are identical. This does not apply to the second acid molten globule intermediate I2, which demonstrates a higher rate of folding by a factor of 270. Different energy of activation and pH dependence were found for folding from states I1 or I2. Proteins 32:304-313, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 324-333 
    ISSN: 0887-3585
    Keywords: normal mode analysis of a complex ; subtilisin-eglin c complex ; dynamics of a complex ; binding free energy ; internal and external motions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Normal mode analysis of subtilisin-eglin c complex was performed to investigate the dynamics at the interface between the enzyme and the inhibitor. The internal motions of the complex calculated from the normal modes were divided into three parts: the internal motions changing the shape of each molecule, the external rigid-body motions changing their mutual dispositions, and the coupling between the internal and external motions. From the results of the analysis, the following characteristic features were found in the dynamics at the interface regions: 1) negative correlation between the internal and external motions within each molecule, and 2) positive correlation between the external motions of the two molecules. The former decreases the apparent amplitudes of motions at the interface. The latter minimizes the interference between individual motions of the two molecules. These dynamic characteristics allow the enzyme and the inhibitor to move as freely as possible. This finding suggests that the experimental evidence of the large entropy gain on binding should be attributed not only to strong hydrophobic interactions, but also to the dynamic structure of the complex, which is found to minimize an unavoidable loss of the conformational entropy on binding. Proteins 32:324-333, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 166
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 352-356 
    ISSN: 0887-3585
    Keywords: myoglobin ; nitric oxide ; ligand binding ; X-ray crystallography ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The structure of the ferrous nitric oxide form of native sperm whale myoglobin has been determined by X-ray crystallography to 1.7 Å resolution. The nitric oxide ligand is bent with respect to the heme plane: the Fe-N-O angle is 112°. This angle is smaller than those observed in model compounds and in lupin leghemoglobin. The exact angle appears to be influenced by the strength of the proximal bond and hydrogen bonding interactions between the distal histidine and the bound ligand. Specifically, the Nε atom of histidine64 is located 2.8 Å away from the nitrogen atom of the bound ligand, implying electrostatic stabilization of the FeNO complex. This interpretation is supported by mutagenesis studies. When histidine64 is replaced with apolar amino acids, the rate of nitric oxide dissociation from myoglobin increases tenfold. Proteins 30:352-356, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 167
    ISSN: 0887-3585
    Keywords: protein modeling ; crystal structure ; conformation change ; prediction ; mechanism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The occurrence of large domain motions associated with the mechanism of action of many proteins is well established. We present a general method of predicting domain closure applicable to proteins containing domains separated by an apparent hinge. The method attempts to allow for natural directional bias within the closing protein by repeatedly applying a weak pulling force over a short distance between pairs of atoms chosen at random in the two domains in question. Appropriate parameters governing the pulling function were determined empirically. The method was applied to the bi-lobal protein PGK and a closed-form activated ternary complex generated for Bacillus stearothermophilus PGK. This model was compared with the recently determined crystal structure of closed-form Trypanosoma brucei PGK. The model predicts the correct hinge regions, although the magnitude of movement at one hinge point was overestimated, and provides a reasonable representation of the closed-form ternary complex. Proteins 30:372-380, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 168
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 388-400 
    ISSN: 0887-3585
    Keywords: molecular dynamics ; free energy perturbation ; thermodynamics integration ; spherical solvent boundary potential ; cell multipole method ; Nosé-Hoover equation ; component analysis ; chymotrypsin inhibitor 2 ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We developed a software package for improved free energy calculation, in which spherical solvent boundary potential, cell multipole method, and Nosé-Hoover equation are employed. The performance of the developed software package is demonstrated in the case of valine to alanine mutation of the 57th residue in chymotrypsin inhibitor 2. By using this package, we obtained results quantitatively comparable to experimental results. By the free energy component analysis, it is shown that leucine 51, arginine 65, arginine 67, and phenylalanine 69 residues contribute significantly to the total free energy shift, ΔΔG. Among them, contribution from the hydrophilic arginine 67 residue, which is in close contact with the mutation site, is the largest. Structure around the mutation site is largely changed by the mutation. The structure change is caused mainly by two effects, hydrophobic interaction and short-range interaction along the sequence. Effects of Nosé-Hoover algorithm and Kirkwood reaction field are also discussed. Proteins 30:388-400, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 169
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 435-441 
    ISSN: 0887-3585
    Keywords: cytochrome c ; thermal unfolding ; proteolysis ; proteinase K ; thermolysin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Recent hydrogen exchange experiments on native cytochrome c implicate a sequential unfolding pathway in contrast to a simple two-state process. We have studied the heat-induced unfolding of this protein by using spectroscopic measurements to detect changes in conformation and proteolytic enzyme digestion to identify regions of the protein that are labile. Several spectroscopic profiles were monitored: CD at 222 nm, a measurement of secondary structure change in the protein, the absorbance at 280 nm, involving the local environment of Trp 59, and absorbance at 420 nm, the Soret band of the heme. The apparent Tm values for these probes differ, consistent with an unfolding pathway containing intermediates. The limited digestion by proteinase K is consistent with population of an intermediate state in unfolding. We find a single strong region of cleavage at low temperature with retention of structure in each fragment. Proteins 30:435-441, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 170
    ISSN: 0887-3585
    Keywords: venom toxin ; protein-membrane interaction ; X-ray diffraction ; spectroscopy ; quaternary structural change ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Bothropstoxin I (BthTX-I) from the venom of Bothrops jararacussuis a myotoxic phospholipase A2 (PLA2) homologue which, although catalytically inactive due to an Asp49→Lys substitution, disrupts the integrity of lipid membranes by a Ca2+-independent mechanism. The crystal structures of two dimeric forms of BthTX-I which diffract X-rays to resolutions of 3.1 and 2.1 Å have been determined. The monomers in both structures are related by an almost perfect twofold axis of rotation and the dimer interfaces are defined by contacts between the N-terminal α-helical regions and the tips of the β-wings of partner monomers. Significant differences in the relative orientation of the monomers in the two crystal forms results in “open” and “closed” dimer conformations. Spectroscopic investigations of BthTX-I in solution have correlated these conformational differences with changes in the intrinsic fluorescence emission of the single tryptophan residues located at the dimer interface. The possible relevance of this structural transition in the Ca2+-independent membrane damaging activity is discussed. Proteins 30:442-454, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 171
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 460-474 
    ISSN: 0887-3585
    Keywords: major histocompatibility complex ; antigen ; stochastic models ; machine learning ; protein docking ; computational biology ; immunology ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The binding of a major histocompatibility complex (MHC) molecule to a peptide originating in an antigen is essential to recognizing antigens in immune systems, and it has proved to be important to use computers to predict the peptides that will bind to an MHC molecule. The purpose of this paper is twofold: First, we propose to apply supervised learning of hidden Markov models (HMMs) to this problem, which can surpass existing methods for the problem of predicting MHC-binding peptides. Second, we generate peptides that have high probabilities to bind to a certain MHC molecule, based on our proposed method using peptides binding to MHC molecules as a set of training data. From our experiments, in a type of cross-validation test, the discrimination accuracy of our supervised learning method is usually approximately 2-15% better than those of other methods, including backpropagation neural networks, which have been regarded as the most effective approach to this problem. Furthermore, using an HMM trained for HLA-A2, we present new peptide sequences that are provided with high binding probabilities by the HMM and that are thus expected to bind to HLA-A2 proteins. Peptide sequences not shown in this paper but with rather high binding probabilities can be obtained from the author (E-mail: mami@ccm.cl.nec.co.jp). Proteins 33:460-474, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 172
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 475-495 
    ISSN: 0887-3585
    Keywords: docking ; landscape ; dynamics ; dielectric ; affinity ; binding ; methotrexate ; thermolysin ; dihydrofolate reductase ; HIV protease ; generalized Born ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A novel dynamical protocol for finding the low-energy conformations of a protein-ligand complex is described. The energy functions examined consist of an empirical force field with four different dielectric screening models; the generalized Born/surface area model also is examined. Application of the method to three complexes of known crystal structure provides insights into the energy functions used for selecting low-energy docked conformations and into the structure of the binding-energy surface. Evidence is presented that the local energy minima of a ligand in a binding site are arranged in a hierarchical fashion. This observation motivates the construction of a hierarchical docking algorithm that substantially enriches the population of ligand conformations close to the crystal conformation. The algorithm is also adapted to permit docking into a flexible binding site and preliminary tests of this method are presented. Proteins 33:475-495, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 173
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 518-534 
    ISSN: 0887-3585
    Keywords: structure databank ; superfold ; protein structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Eight microbial genomes are compared in terms of protein structure. Specifically, yeast, H. influenzae, M. genitalium, M. jannaschii, Synechocystis, M. pneumoniae, H. pylori, and E. coli are compared in terms of patterns of fold usage - whether a given fold occurs in a particular organism. Of the ∼340 soluble protein folds currently in the structure databank (PDB), 240 occur in at least one of the eight genomes, and 30 are shared amongst all eight. The shared folds are depleted in all-helical structure and enriched in mixed helix-sheet structure compared to the folds in the PDB. The top-10 most common of the shared 30 are enriched in superfolds, uniting many non-homologous sequence families, and are especially similar in overall architecture - eight having helices packed onto a central sheet. They are also very different from the common folds in the PBD, highlighting databank biases. Folds can be ranked in terms of expression as well as genome duplication. In yeast the top-10 most highly expressed folds are considerably different from the most highly duplicated folds. A tree can be constructed grouping genomes in terms of their shared folds. This has a remarkably similar topology to more conventional classifications, based on very different measures of relatedness. Finally, folds of membrane proteins can be analyzed through transmembrane-helix (TM) prediction. All the genomes appear to have similar usage patterns for these folds, with the occurrence of a particular fold falling off rapidly with increasing numbers of TM-elements, according to a “Zipf-like” law. This implies there are no marked preferences for proteins with particular numbers of TM-helices (e.g. 7-TM) in microbial genomes. Further information pertinent to this analysis is available at http://bioinfo.mbb.yale.edu/genome. Proteins 33:518-534, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 174
    ISSN: 0887-3585
    Keywords: mutagenesis ; c.d. spectroscopy ; unfolding ; Ω-loop ; molten-globule ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We wished to test the hypothesis that the non proline cis to trans isomerization of the peptide bond at position 167 in the S. aureus β-lactamase PC1 exerts a significant controlling effect on the folding pathway of this enzyme. The previous data presented in support of this hypothesis could not rule out the effect of factors unrelated to non-proline cis/trans isomerization. We have used the plasmid pET9d to direct soluble overproduction of the S. aureus β-lactamase PC1 and a site-directed mutant (Ile 167 to Pro) in Escherichia coli. Following purification the proteins were subjected to a comparative analysis of the kinetics of unfolding and refolding using the techniques of near- and far-UV circular dichroism spectroscopy and fluorescence spectroscopy in conjunction with “double-jump” experiments. Results show that the fully-unfolded I167P mutant enzyme retains 20% of molecules in a fast-refolding form and that slower-refolding molecules fold faster than the recombinant wild-type enzyme. The final stage of folding involves folding of the Ω-loop into a conformation essential for enzymatic activity. In support of the original hypothesis, the folding of this Ω-loop is rate limited by the isomerization of the Glu 166-Ile 167 peptide bond. Proteins 33:550-557, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 175
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 535-549 
    ISSN: 0887-3585
    Keywords: docking ; protein-DNA ; prediction ; structure ; base recognition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The docking of repressor proteins to DNA starting from the unbound protein and model-built DNA coordinates is modeled computationally. The approach was evaluated on eight repressor/DNA complexes that employed different modes for protein/ DNA recognition. The global search is based on a protein-protein docking algorithm that evaluates shape and electrostatic complementarity, which was modified to consider the importance of electrostatic features in DNA-protein recognition. Complexes were then ranked by an empirical score for the observed amino acid /nucleotide pairings (i.e., protein-DNA pair potentials) derived from a database of 20 protein/DNA complexes. A good prediction had at least 65% of the correct contacts modeled. This approach was able to identify a good solution at rank four or better for three out of the eight complexes. Predicted complexes were filtered by a distance constraint based on experimental data defining the DNA footprint. This improved coverage to four out of eight complexes having a good model at rank four or better. The additional use of amino acid mutagenesis and phylogenetic data defining residues on the repressor resulted in between 2 and 27 models that would have to be examined to find a good solution for seven of the eight test systems. This study shows that starting with unbound coordinates one can predict three-dimensional models for protein/DNA complexes that do not involve gross conformational changes on association. Proteins 33:535-549, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 176
    ISSN: 0887-3585
    Keywords: Drosophila melanogaster couch potato protein ; Werner's syndrome ; restrained molecular dynamics ; simulated annealing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We have recently described an automated approach for homology modeling using restrained molecular dynamics and simulated annealing procedures (Li et al, Protein Sci., 6:956-970,1997). We have employed this approach for constructing a homology model of the putative RNA-binding domain of the human RNA-binding protein with multiple splice sites (RBP-MS). The regions of RBP-MS which are homologous to the template protein snRNP U1A were constrained by “homology distance constraints,” while the conformation of the non-homologous regions were defined only by a potential energy function. A full energy function without explicit solvent was employed to ensure that the calculated structures have good conformational energies and are physically reasonable. The effects of misalignment of the unknown and the template sequences were also explored in order to determine the feasibility of this homology modeling method for distinguishing possible sequence alignments based on considerations of the resulting conformational energies of modeled structures. Differences in the alignments of the unknown and the template sequences result in significant differences in the conformational energies of the calculated homology models. These results suggest that conformational energies and residual constraint violations in these homology-constrained simulated annealing calculations can be used as criteria to distinguish between correct and incorrect sequence alignments and chain folds. Proteins 33:558-566, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 177
    ISSN: 0887-3585
    Keywords: bacterial cellobiase ; mutated β-glucosidase ; family 1 ; thermoresistance ; X-ray structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The increasing development of the biotechnology industry demands the design of enzymes suitable to be used in conditions that often require broad resistance against adverse conditions. β-glucosidase A from Bacillus polymyxa is an interesting model for studies of protein engineering. This is a well-characterized enzyme, belonging to glycosyl hydrolase family 1. Its natural substrate is cellobiose, but is also active against various artificial substrates. In its native state has an octameric structure. Its subunit conserves the general (α/β)8 barrel topology of its family, with the active site being in a cavity defined along the axis of the barrel. Using random-mutagenesis, we have identified several mutations enhancing its stability and it was found that one them, the E96K substitution, involved structural changes. The crystal structure of this mutant has been determined by X-ray diffraction and compared with the native structure. The only difference founded between both structures is a new ion pair linking Lys96 introduced at the N-terminus of helix α2, to Asp28, located in one of the loops surrounding the active-site cavity. The new ion pair binds two segments of the chain that are distant in sequence and, therefore, this favorable interaction must exert a determinant influence in stabilizing the tertiary structure. Furthermore, analysis of the crystallographic isotropic temperature factors reveals that, as a direct consequence of the introduced ion pair, an unexpected decreased mobility of secondary structure units of the barrel which are proximal to the site of mutation is observed. However, this effect is observed only in the surrounding of one of the partners forming the salt bridge and not around the other. These results show that far-reaching effects can be achieved by a single amino acid replacement within the protein structure. Consequently, the identification and combination of a few single substitutions affecting stability may be sufficient to obtain a highly resistant enzyme, suitable to be used under extreme conditions. Proteins 33:567-576, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 178
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 1-2 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 150-159 
    ISSN: 0887-3585
    Keywords: photosynthetic reaction center ; bacteriorhodopsin ; cytochrome C oxidase ; zipper ; packing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Membrane-embedded protein domains frequently exist as α-helical bundles, as exemplified by photosynthetic reaction centers, bacteriorhodopsin, and cytochrome C oxidase. The sidechain packing between their transmembrane helices was investigated by a nearest-neighbor analysis which identified sets of interfacial residues for each analyzed helix-helix interface. For the left-handed helix-helix pairs, the interfacial residues almost exclusively occupy positions a, d, e, or g within a heptad motif (abcdefg) which is repeated two to three times for each interacting helical surface. The connectivity between the interfacial residues of adjacent helices conforms to the knobs-into-holes type of sidechain packing known from soluble coiled coils. These results demonstrate on a quantitative basis that the geometry of sidechain packing is similar for left-handed helix-helix pairs embedded in membranes and coiled coils of soluble proteins. The transmembrane helix-helix interfaces studied are somewhat less compact and regular as compared to soluble coiled coils and tolerate all hydrophobic amino acid types to similar degrees. The results are discussed with respect to previous experimental findings which demonstrate that specific interactions between transmembrane helices are important for membrane protein folding and/or oligomerization. Proteins 31:150-159, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 577-589 
    ISSN: 0887-3585
    Keywords: electrostatics ; accessible surface area ; fatty acid binding proteins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Adipocyte lipid-binding protein (ALBP) is one of a family of intracellular lipid-binding proteins (iLBPs) that bind fatty acids, retinoids, and other hydrophobic ligands. The different members of this family exhibit a highly conserved three-dimensional structure; and where structures have been determined both with (holo) and without (apo) bound lipid, observed conformational changes are extremely small (Banaszak, et al., 1994, Adv. Prot. Chem. 45, 89; Bernlohr, et al., 1997, Annu. Rev. Nutr. 17, 277). We have examined the electrostatic, hydrophobic, and water accessible surfaces of ALBP in the apo form and of holo forms with a variety of bound ligands. These calculations reveal a number of previously unrecognized changes between apo and holo ALBP, including: 1) an increase in the overall protein surface area when ligand binds, 2) expansion of the binding cavity when ligand is bound, 3) clustering of individual residue exposure increases in the area surrounding the proposed ligand entry portal, and 4) ligand-binding dependent variation in the topology of the electrostatic potential in the area surrounding the ligand entry portal. These focused analyses of the crystallographic structures thus reveal a number of subtle but consistent conformational and surface changes that might serve as markers for differential targeting of protein-lipid complexes within the cell. Most changes are consistent from ligand to ligand, however there are some ligand-specific changes. Comparable calculations with intestinal fatty-acid-binding protein and other vertebrate iLBPs show differences in the electrostatic topology, hydrophobic topology, and in localized changes in solvent exposure near the ligand entry portal. These results provide a basis toward understanding the functional and mechanistic differences among these highly structurally homologous proteins. Further, they suggest that iLBPs from different tissues exhibit one of two predominant end-state structural distributions of the ligand entry portal. Proteins 33:577-589, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 601-612 
    ISSN: 0887-3585
    Keywords: platelet-derived growth factor receptor ; E5 protein ; bovine papillomavirus ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The bovine papillomavirus E5 protein is thought to be a type II integral membrane protein that exists as a disulfide-linked homodimer in transformed cells. Polarized-infrared measurements show that the E5 dimer in membrane bilayers is largely α-helical and has a transmembrane orientation. Computational searches of helix-helix conformations reveal two possible low-energy dimer structures. Correlation of these results with previous mutagenesis studies on the E5 protein suggests how the E5 dimer may serve as a molecular scaffold for dimerization and ligand-independent activation of the PDGF-β receptor. We propose that on each face of the E5 dimer a PDGF-β receptor molecule interacts directly with Gln17 from one E5 monomer and with Asp33 from the other E5 monomer. This model accounts for the requirement of Gln17 and Asp33 for complex formation and explains genetic results that dimerization of the E5 protein is essential for cell transformation. Proteins 33:601-612, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 182
    ISSN: 0887-3585
    Keywords: mass spectrometry ; time-of-flight ; nanoflow electrospray ; transthyretin ; retinol binding protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Complexes formed between transthyretin and retinol-binding protein prevent loss of retinol from the body through glomerular filtration. The interactions between these proteins have been examined by electrospray ionization combined with time-of-flight mass analysis. Conditions were found whereby complexes of these proteins, containing from four to six protein molecules with up to two ligands, are preserved in the gas phase. Analysis of the mass spectra of these multimeric species gives the overall stoichiometry of the protein subunits and provides estimates for solution dissociation constants of 1.9 ± 1.0 × 10-7 M for the first and 3.5 ± 1.0 × 10-5 M for the second retinol-binding protein molecule bound to a transthyretin tetramer. Dissociation of these protein assemblies within the gas phase of the mass spectrometer shows that each retinol-binding protein molecule interacts with three transthyretin molecules. Mass spectral analysis illustrates not only a correlation with solution behavior and crystallographic data of a closely related protein complex but also exemplifies a general method for analysis of multi-protein assemblies. Proteins Suppl. 2:3-11, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 183
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 12-21 
    ISSN: 0887-3585
    Keywords: non-covalent interaction ; DNA ; peptides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: DNA-histone interaction facilitates packaging of huge amounts of DNA in the confined space of the nucleus. The importance of this interaction underscores the need for new analytical techniques to acquire a better understanding of nuclear dynamics. Electrospray-ionization mass spectrometry made it possible to investigate non-covalently-bound biopolymers. We are enlarging the scope of available analytical tools by studying non-covalent interaction between single and double stranded DNA and peptides with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The interaction is an ionic one, between the negatively charged sugar-phosphate backbone of single stranded DNA and positively charged side chains of Arg- and Lys-rich peptides as demonstrated by Vertes' group1 with the dipeptides Arg-Lys and His-His. We replicated Lecchi and Pannell's work,2 which showed that double stranded DNA could be seen by MALDI using 6-aza-2-thiothymine (ATT) as matrix. We tried various peptides and found that as was demonstrated in DNA-histone interaction, a certain ratio and arrangement of basic residues was needed in order to generate ionic binding between DNA and peptide. We tested various single and double stranded DNA with the peptide of choice, and found that other variables such as pH value of solution, ionic strength, and matrix system did play a role. Proteins Suppl. 2:12-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 184
    ISSN: 0887-3585
    Keywords: mass spectrometry ; time-of-flight ; nanoflow electrospray ; transthyretin ; retinol binding protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Complexes formed between transthyretin and retinol-binding protein prevent loss of retinol from the body through glomerular filtration. The interactions between these proteins have been examined by electrospray ionization combined with time-of-flight mass analysis. Conditions were found whereby complexes of these proteins, containing from four to six protein molecules with up to two ligands, are preserved in the gas phase. Analysis of the mass spectra of these multimeric species gives the overall stoichiometry of the protein subunits and provides estimates for solution dissociation constants of 1.9 ± 1.0 × 10-7 M for the first and 3.5 ± 1.0 × 10-5 M for the second retinol-binding protein molecule bound to a transthyretin tetramer. Dissociation of these protein assemblies within the gas phase of the mass spectrometer shows that each retinol-binding protein molecule interacts with three transthyretin molecules. Mass spectral analysis illustrates not only a correlation with solution behavior and crystallographic data of a closely related protein complex but also exemplifies a general method for analysis of multi-protein assemblies. Proteins Suppl. 2:3-11, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 185
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 22-27 
    ISSN: 0887-3585
    Keywords: secondary structure ; β-pleated sheet ; mass spectrometry ; molecular mechanics calculations ; electrostatic interactions ; hydrogen bonds ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The stability of single β-strands and multistrand β-pleated sheets as elements of secondary structure is examined in the absence of intermolecular interactions. Such experimental conditions (e.g., complete removal of solvent molecules and counterions) are achieved by placing the peptide ions in the gas phase. The metastable multiply- charged peptide ions produced by electrospray ionization undergo unimolecular dissociation. Intercharge repulsion within the precursor ions gives rise to the elevated kinetic energy of fragment ions, which is measured using Mass-analyzed Ion Kinetic Energy (MIKE) spectrometry. Intercharge distances calculated based on these measurements are compared to the numbers derived from molecular mechanics calculations with charge site assignments based on relative proton affinities. Evidence is presented suggesting that single β-strands form collapsed structures in the absence of solvents, while multistrand β-pleated sheets are likely to retain “native-like” secondary structures under the same conditions. These results indicate that intramolecular hydrogen bonds are the major factor determining the three-dimensional arrangements of polypeptides in the gas phase, compensating both long- and short-range electrostatic repulsions. This is in good agreement with our earlier findings (Proteins 27:165-170, 1997) concerning stability of helical conformation of melittin in the absence of solvent. Proteins Suppl. 2:22-27, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 186
    ISSN: 0887-3585
    Keywords: electrospray ionization mass spectrometry ; noncovalent complexes ; protease ; integrase ; nucleocapsid protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Mass spectrometry (MS) with electrospray ionization (ESI) has shown utility for studying noncovalent protein complexes, as it offers advantages in sensitivity, speed, and mass accuracy. The stoichiometry of the binding partners can be easily deduced from the molecular weight measurement. In many examples of protein complexes, the gas phase-based measurement is consistent with the expected solution phase binding characteristics. This quality suggests the utility of ESI-MS for investigating solution phase molecular interactions. Complexes composed of proteins from the human immunodeficiency virus (HIV) have been studied using ESI-MS. Multiply charged protein dimers from HIV integrase catalytic core (F185K) and HIV protease have been observed. Furthermore, the ternary complex between HIV protease dimer and inhibitor pepstatin A was studied as a function of solution pH. Zinc binding to zinc finger-containing nucleocapsid protein (NCp7) and the NCp7-psi RNA 1:1 stoichiometry complex was also studied by ESI-MS. No protein-RNA complex was observed in the absence of zinc, consistent with the role of the zinc finger motifs for RNA binding. Proteins Suppl. 2:28-37, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 187
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 80-87 
    ISSN: 0887-3585
    Keywords: proteins ; inverse design ; negative design ; numerical optimization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A two amino acid (hydrophobic and polar) scheme is used to perform the design on target conformations corresponding to the native states of 20 single chain proteins. Strikingly, the percentage of successful identification of the nature of the residues benchmarked against naturally occurring proteins and their homologues is around 75%, independent of the complexity of the design procedure. Typically, the lowest success rate occurs for residues such as alanine that have a high secondary structure functionality. Using a simple lattice model, we argue that one possible shortcoming of the model studied may involve the coarse-graining of the 20 kinds of amino acids into just two effective types. Proteins 32:80-87, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 188
    ISSN: 0887-3585
    Keywords: van der Waals radius ; Coulombic radius ; docking ; molecular surface ; solvent-accessible surface ; protein-protein interface ; protein-water boundary ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We analyze the contact distance distributions between nonbonded atoms in known protein structures. A complete set of van der Waals (VDW) radii for 24 protein atom types and for crystal-bound water is derived from the contact distance distributions of these atoms with a selected group of apolar atoms. In addition, a set of Coulombic radii for polar atoms is derived from their contacts with water. The contact distance distributions and the two sets of radii are derived in a systematic and self-consistent manner using an iterative procedure. The Coulombic radii for polar atoms are, on average, 0.18 Å smaller than their VDW radii. The VDW radius of water is 1.7 Å, which is 0.3 Å larger than its Coulombic radius. We show that both the VDW and the Coulombic radii of polar atoms are needed in calculating the molecular and solvent-accessible surfaces of proteins. The VDW radii are needed to generate the apolar portions of the surface and the Coulombic radii for the polar portions. The fact that polar atoms have two apparent sizes implies that a hydrophobic cavity has to be larger than a polar cavity in order to accommodate the same number of water molecules. Most surface area calculations have used only one radius for each polar atom. As a result, unreal cavities, grooves, or pockets may be generated if the Coulombic radii of polar atoms are used. On the other hand, if the VDW radii of polar atoms are used, the details of the polar regions of the surface may be lost. The accuracy of the molecular and the solvent-accessible surfaces of proteins can be improved if the radii of polar atoms are allowed to change depending on the nature of their contacting neighbors. The surface of a protein at a protein-protein interface differs from that in solution in that it has to be generated using at least two kinds of probes, one representing a typical apolar atom and the other a typical polar atom. This observation has important implications for docking, which relies on surface complementarity at the interface. Proteins 32:111-127, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 119-134 
    ISSN: 0887-3585
    Keywords: molecular modeling ; proton transfer ; enzyme catalysis ; mutations ; molecular mechanics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In this paper, the carbonic anhydrase II (CA II) enzyme active site is modeled using ab initio calculations and molecular dynamics simulations to examine a number of important issues for the enzyme function. It is found that the Zn2+ ion is dominantly tetrahedrally coordinated, which agrees with X-ray crystallographic studies. However, a transient five-fold coordination with an extra water molecule is also found. Studies of His64 conformations upon a change in the protonation states of the Zn-bound water and the His64 residue also confirm the results of an X-ray study which suggest that the His64 conformation is quite flexible. However, the degree of water solvation is found to affect this behavior. Water bridge formation between the Zn-bound water and the His64 residue was found to involve a free energy barrier of 2-3 kcal/mol and an average lifetime of several picoseconds, which supports the concept of a proton transfer mechanism through such a bridge. Mutations of various residues around the active site provide further insight into the corresponding experimental results and, in fact, suggest an important role for the solvent water molecules in the CA II catalytic mechanism. Proteins 33:119-134, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 190
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 1-1 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 86-99 
    ISSN: 0887-3585
    Keywords: partition coefficient ; lipophilicity profile ; ion-pair partitioning ; molecular volume ; hydrogen bonding ; cyclosporin ; octreotide (sandostatin) ; gramicidin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A remarkably simple, molecular size-based model developed to predict octanol-water partition coefficients for organic compounds is tested on a set of 188 neutral peptides with available experimental partition data. Despite using only two parameters, it gives a promising correlation (r2 = 0.914; σ = 0.455, F = 1978.0), and predictions are in a realistic range even for larger peptides (cyclosporin, melanotan, sandostatin) where common, overparametrized fragment methods become quite unreliable. Ion-pair partitioning and the extraction constant formalism is briefly reviewed to describe the sigmoidal lipophilicity profile of ionizable, nonzwitterionic peptides. It seems possible to extend the present model to estimate apparent partition coefficients measured around neutral pH and physiological conditions for monoionic peptides; however, as no standard conditions are yet defined and only relatively small number of experimental data are available, the situation here is more complex. Proteins 30:86-99, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 192
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 113-135 
    ISSN: 0887-3585
    Keywords: HMG proteins ; protein-DNA complex ; HMG-box ; nonsequence-specificity ; molecular dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Non-histone chromosomal proteins are an important part of nuclear structure and function due to their ability to interact with DNA to form and modulate chromatin structure and regulate gene expression. However, the understanding of the function of chromosomal proteins at the molecular level has been hampered by the lack of structures of chromosomal protein-DNA complexes. We have carried out a molecular dynamics modeling study to provide insight into the mode of DNA binding to the chromosomal HMG-domain protein, HMG-D. Three models of a complex of HMG-D bound to DNA were derived through docking the protein to two different DNA fragments of known structure. Molecular dynamics simulations of the complexes provided data indicating the most favorable model. This model was further refined by molecular dynamics simulation and extensively analyzed. The structure of the corresponding HMG-D-DNA complex exhibits many features seen in the NMR structures of the sequence-specific HMG-domain-DNA complexes, lymphoid enhancer factor 1 (LEF-1) and testis determining factor (SRY). The model reveals differences from these known structures that suggest how chromosomal proteins bind to many different DNA sequences with comparable affinity. Proteins 30:113-135, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 193
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 144-154 
    ISSN: 0887-3585
    Keywords: hinge bending ; X-ray conformers ; Chasles' theorem ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Methods developed originally to analyze domain motions from simulation [Proteins 27:425-437, 1997] are adapted and extended for the analysis of X-ray conformers and for proteins with more than two domains. The method can be applied as an automatic procedure to any case where more than one conformation is available. The basis of the methodology is that domains can be recognized from the difference in the parameters governing their quasi-rigid body motion, and in particular their rotation vectors. A clustering algorithm is used to determine clusters of rotation vectors corresponding to main-chain segments that form possible dynamic domains. Domains are accepted for further analysis on the basis of a ratio of interdomain to intradomain fluctuation, and Chasles' theorem is used to determine interdomain screw axes. Finally residues involved in the interdomain motion are identified. The methodology is tested on citrate synthase and the M6I mutant of T4 lysozyme. In both cases new aspects to their conformational change are revealed, as are individual residues intimately involved in their dynamics. For citrate synthase the beta sheet is identified to be part of the hinging mechanism. In the case of T4 lysozyme, one of the four transitions in the pathway from the closed to the open conformation, furnished four dynamic domains rather than the expected two. This result indicates that the number of dynamic domains a protein possesses may not be a constant of the motion. Proteins 30:144-154, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 194
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 215-227 
    ISSN: 0887-3585
    Keywords: molecular dynamics ; protein dynamics ; computer simulation ; Monte Carlo ; Brownian dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present an algorithm for simulating the long time scale dynamics of proteins and other macromolecules. Our method applies the concept of multiple time step integration to the diffusive Langevin equation, in which short time scale dynamics are replaced by friction and noise. The macromolecular force field is represented at atomic resolution. Slow motions are modeled by constrained Langevin dynamics with very large time steps, while faster degrees of freedom are kept in local thermal equilibrium. In the limit of a sufficiently large molecule, our algorithm is shown to reduce the CPU time required by two orders of magnitude. We test the algorithm on two systems, alanine dipeptide and bovine pancreatic trypsin inhibitor (BPTI), and find that it accurately calculates a variety of equilibrium and dynamical properties. In the case of BPTI, the CPU time required is reduced by nearly a factor of 60 compared to a conventional, unconstrained Langevin simulation using the same force field. Proteins 30:215-227, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 232-243 
    ISSN: 0887-3585
    Keywords: turkey lysozyme ; human lysozyme ; crystal structure ; protein structure ; structure refinement ; protein crystal ; atomic resolution ; rigid-body motion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Crystal structures of turkey egg lysozyme (TEL) and human lysozyme (HL) were refined by full-matrix least-squares method using anisotropic temperature factors. The refinement converged at the conventional R-values of 0.104 (TEL) and 0.115 (HL) for reflections with Fo 〉 0 to the resolution of 1.12 Å and 1.15 Å, respectively. The estimated r.m.s. coordinate errors for protein atoms were 0.031 Å (TEL) and 0.034 Å (HL). The introduction of anisotropic temperature factors markedly reduced the R-value but did not significantly affect the main chain coordinates. The degree of anisotropy of atomic thermal motion has strong positive correlation with the square of distance from the molecular centroid. The ratio of the radial component of thermal ellipsoid to the r.m.s. magnitude of three principal components has negative correlation with the distance from the molecular centroid, suggesting the domination of libration rather than breathing motion. The TLS model was applied to elucidate the characteristics of the rigid-body motion. The TLS tensors were determined by the least-squares fit to observed temperature factors. The profile of the magnitude of reproduced temperature factors by the TLS method well fitted to that of observed Beqv. However, considerable disagreement was observed in the shape and orientation of thermal ellipsoid for atoms with large temperature factors, indicating the large contribution of local motion. The upper estimate of the external motion, 67% (TEL) and 61% (HL) of Beqv, was deduced from the plot of the magnitude of TLS tensors determined for main chain atoms which were grouped into shells according to the distance from the center of libration. In the external motion, the translational portion is predominant and the contribution of libration and screw motion is relatively small. The internal motion, estimated by subtracting the upper estimate of the external motion from the observed temperature factor, is very similar between TEL and HL in spite of the difference in 54 of 130 amino acid residues and in crystal packing, being suggested to reflect the intrinsic internal motion of chicken-type lysozymes. Proteins 30:232-243, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 264-274 
    ISSN: 0887-3585
    Keywords: factor Xa ; serine proteinases ; blood coagulation ; active site inhibitors ; transferred NOE ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The structure of two selective inhibitors, Ac-Tyr-Ile-Arg-Ile-Pro-NH2 and Ac-(4-Amino-Phe)-(Cyclohexyl-Gly)-Arg-NH2, in the active site of the blood clotting enzyme factor Xa was determined by using transferred nuclear Overhauser effect nuclear magnetic resonance (NMR) spectroscopy. They represent a family of peptidic inhibitors obtained by the screening of a vast combinatorial library. Each structure was first calculated by using standard computational procedures (distance geometry, simulated annealing, energy minimization) and then further refined by systematic search of the conformation of the inhibitor docked in the active site and repeating the simulated annealing and energy minimization. The final structure was optimized by molecular dynamics simulations of the inhibitor-complex in water. The NMR restraints were kept throughout the refinement. The inhibitors assume a compact, very well defined conformation, embedded into the substrate binding site not in the same way as a substrate, blocking thus the catalysis. The model allows to explain the mode of action, affinity, and specificity of the peptides and to map the active site. Proteins 30:264-279, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 197
    ISSN: 0887-3585
    Keywords: molecular recognition ; flexible docking ; protein-ligand interaction ; induced fit ; structure-based drug design ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Here we dock a ligand onto a receptor surface allowing hinge-bending domain/substructural movements. Our approach mimics and manifests induced fit in molecular recognition. All angular rotations are allowed on the one hand, while a conformational space search is avoided on the other. Rather than dock each of the molecular parts separately with subsequent reconstruction of the consistently docked molecules, all parts are docked simultaneously while still utilizing the position of the hinge from the start. Like pliers closing on a screw, the receptor automatically closes on its ligand in the best surface-matching way. Movements are allowed either in the ligand or in the larger receptor, hence reproducing induced molecular fit. Hinge bending movements are frequently observed when molecules associate. There are numerous examples of open versus closed conformations taking place upon binding. Such movements are observed when the substrate binds to its respective enzyme. In particular, such movements are of interest in allosteric enzymes. The movements can involve entire domains, subdomains, loops, (other) secondary structure elements, or between any groups of atoms connected by flexible joints. We have implemented the hinges at points and at bonds. By allowing 3-dimensional (3-D) rotation at the hinge, several rotations about (consecutive or nearby) bonds are implicitly taken into account. Alternatively, if required, the point rotation can be restricted to bond rotation. Here we illustrate this hinge-bending docking approach and the insight into flexibility it provides on a complex of the calmodulin with its M13 ligand, positioning the hinges either in the ligand or in the larger receptor. This automated and efficient method is adapted from computer vision and robotics. It enables utilizing entire molecular surfaces rather than focusing a priori on active sites. Hence, allows attaining the overall optimally matching surfaces, the extent and type of motions which are involved. Here we do not treat the conformational flexibility of side-chains or of very small pieces of the molecules. Therefore, currently available methods addressing these issues and the method presented here, are complementary to each other, expanding the repertoire of computational docking tools foreseen to aid in studies of recognition, conformational flexibility and drug design. Proteins 32:159-174, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 198
    ISSN: 0887-3585
    Keywords: electrostatics ; allostery ; modeling ; signal transduction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Aspartate transcarbamylase is a large (310 kD), multisubunit protein that binds substrates cooperatively and undergoes a large change in quaternary structure when substrates bind. The forces that drive this transition are poorly understood. We evaluated the electrostatic component of these forces by using finite difference and multigrid methods to solve the nonlinear Poisson-Boltzmann equation for complexes of the enzyme with several substrates and substrate analogs. The results have been compared with calculations for the unliganded protein. While pK½ values of most ionizable residues fall within 3 pH units of values for model compounds, 31 have pK½ values that fall outside the range 0-17. Many of these residues are at the active site, where they interact with the highly charged substrate, in the 80s loop or 240s loop or interact with these loops. The pK½ values of eight ionizable residues related by the twofold molecular axes differ by more than 3 pH units, providing additional evidence for asymmetry within the crystal. As in the unliganded structure, a set of residues forms a network in which ionizable groups with Wij values greater than 2 kcal-m-1 are separated by distances greater than 5 Å. Some residues participate in this network in both the unliganded and N-phosphonacetyl-L-aspartate (PALA)-liganded structure, while others are found in only one structure. The network is more extensive in the PALA-liganded structure than in the unliganded structure, but consists of two separate networks in the two halves of the molecule. Proteins 32:200-210, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 199
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 211-222 
    ISSN: 0887-3585
    Keywords: sequential folding ; local structure formation ; coarsed-grained simulations ; knowledge-based potentials ; virtual bond rotations ; misfolded structures ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Complete sets of low-resolution conformations are generated for eight small proteins by rotating the Cα-Cα virtual bonds at selected flexible regions, while the remaining structural elements are assumed to move in rigid blocks. Several filtering criteria are used to reduce the ensemble size and to ensure the sampling of well-constructed conformations. These filters, based on structure and energy constraints deduced from knowledge-based studies, include the excluded volume requirement, the radius of gyration constraint, and the occurrence of sufficiently strong attractive inter-residue potentials to stabilize compact forms. About 8,000 well-constructed decoys or “probable folds” (PFs) are constructed for each protein. A correlation between root-mean-square (rms) deviations from X-ray structure and total energies is observed, revealing a decrease in energy as the rms deviation decreases. The conformation with the lowest energy exhibits an rms deviation smaller than 3.0 Å, in most of the proteins considered. The results are highly sensitive to the choice of flexible regions. A strong tendency to assume native state rotational angles is revealed for some flexible bonds from the analysis of the distributions of dihedral angles in the PFs, suggesting the formation of foldons near these locally stable regions at early folding pathway. Proteins 32:211-222, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 200
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 223-228 
    ISSN: 0887-3585
    Keywords: protein structure ; phosphorylation ; glycosylation ; protein-protein interactions ; regulation ; molecular springs ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: It is proposed that the thermally driven motion of certain polypeptide chains, including those that are part of an otherwise stable folded protein, produces time-averaged three-dimensional domains that confer unique functions to a protein. These domains may be controlled by collapsing the polypeptide into an enthalpically favored structure, or extending it into an entropically dominated form. In the extended form, these domains occupy a relatively large space, which may be used to regulate protein-protein interactions and confer mechanical properties to proteins. This “entropic bristle” model makes several predictions about the structure and properties of these domains, and the predictions are used to reevaluate a range of biophysical studies on proteins. The outcome of the analysis suggests that the entropic bristle can be used to explain a wide range of disparate and apparently unrelated experimental observations. Proteins 32:223-228, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...