Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cellulase of Trichoderma viride was concentrated in various molecular cutoff membranes, and flux rates and retention of activity were studied under ultra-filtration conditions. Little or no Cellulase was discharged through the membranes tested. The concentrated (5-8-fold) enzymes were used to saccharify finely ground substrate (Solka Floe) in stirred tank (STR) and membrane reactors (MR). A pressure filtration vessel provided with a membrane for simultaneous removal of low molecular weight products (glucose) from the reacting system (Cellulose-Cellulase) is designated as a membrane reactor. Continuous digestion of dense cellulose suspension in the membrane reactor was achieved. Using PM-30 (Amicon) membrane reasonably high mass flux values (9.7-23.3 gals/ft2 - day) were obtained in separating glucose from a digest of 30% cellulose suspension. Abcor membrane (HFA 300) was equally effective and necessitated less care in handling. Nearly 14% glucose concentration has been achieved in less than 50 hrs in STR by digesting a 30% cellulose suspension. Based on experimental data a model system is proposed for the continuous steady state Saccharification of ground substrate in which there is continuous removal of concentrated glucose syrup, and a feedback of enzyme.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...