Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Material surfaces that can mediate cellular interactions by the coupling of specific cell membrane receptors may allow for the design of a biomaterial that can control cell attachment, differentiation, and tissue organization. Cell adhesion proteins have been shown to contain minimum oligopeptide sequences that are recognized by cell surface receptors and can be covalently immobilized on material surfaces. In this study, cell attachment to fluorinated ethylene propylene (FEP) films functionalized with the laminin-derived oligopeptides, YIGSR and a 19-mer IKVAV-containing sequence, was assessed using NG108-15 neuroblastoma and PC12 cells. A radiofrequency glow discharge (RFGD) process that replaces the FEP surface fluorine atoms with reactive hydroxyl functionalities was used to activate the film surfaces. The oligopeptides were then covalently coupled to the surface by their C-terminus using a standard nucleophilic substitution reaction. The covalent attachment of the oligopeptides to the FEP surface was verified using electron spectroscopy for chemical analysis (ESCA). Receptor-mediated NG108-15 cell attachment on the YIGSR-modified films was determined using competitive binding assays. Average cell attachment on the oligopeptide immobilized films in medium containing soluble CDPGYIGSR was reduced by approximately a factor of 2, compared to cell attachment in serum-free medium alone. No significant decrease in cell attachment was noted in medium containing the mock oligopeptide sequence CDPGYIGSK. FEP films immobilized with the 19-mer IKVAV sequence demonstrated a higher percentage of receptor mediated cell attachment on the film surfaces. A sixfold decrease in PC12 cell attachment occurred on the oligopeptide immobilized films in a competitive binding assay medium containing the soluble IKVAV oligopeptide compared to cell attachment in serum-free medium alone. These results demonstrate that laminin oligopeptides can be covalently immobilized on an FEP material surface and analytically verified, and can mediate the receptor specific coupling of neuronal cells onto its surface. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...