Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0947-3440
    Keywords: Carotenoids ; Isonorastacene synthesis ; Singlet oxygen ; Effective chain length ; Second-order quenching rate constants ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The bimolecular rate constants kq for quenching of singlet oxygen (1Δg state) by 26 different natural and novel synthetic carotenoids were determined at 37 °C in a mixture of chloroform and ethanol. The steady-state technique used involves the generation of 1O2 by thermal decomposition of disodium 3,3′-naphtalene-1,4-diyl-dipropionate endoperoxide (NDPO2) and the detection of its luminescence intensity at 1270 nm. Excitation energies (π,π*, 11Ag → 11Bu) and absorption maxima (430-590 nm) vary in the broadest range. Deeply coloured blue carotenoids are also included in the studies for the first time. An empirical correlation between the π,π* (11Ag → 11Bu) excitation energy and carotenoid structure (effective chain length Neff) was found: E(S) = 12642 cm-1 + 92027 cm-1 × 1/Neff. The quenching ability of the investigated carotenoids depends on the excitation energy of their transition at long wavelengths in a characteristic way showing as limiting factors either the thermal Arrhenius activation or the diffusion-controlled rate. This dependence and the suspected relationship between singlet E(S) and triplet E(T) energies, respectively, are discussed.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...