Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Proximal tubule ; Kidney ; K+ conductance ; Cell membrane potential ; Ouabain temperature ; Phlorizin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In isolated perfused segments of the mouse proximal tubule, the potential difference across the basolateral cell membrane (PDbl) was determined with conventional microelectrodes. Under control conditions with symmetrical solutions it amounted to −62±1 mV (n=118). The potential difference across the epithelium (PDte) was −1.7±0.1 mV (n=45). Transepithelial resistance amounted to 1.82±0.09 kΩ cm (n=28), corresponding to 11.4±0.6 Ω cm2. Increasing bath potassium concentration from 5 to 20 mmol/l depolarized PDbl by +24±1 mV (n=103), and PDte by +1.6±0.1 mV (n=19). Thus, the basolateral cell membrane is preferably conductive to potassium. Rapid cooling of the bath perfusate from 38°C to 10°C led to a transient hyperpolarization of PDbl from −60±1 to −65±1 mV (n=21) within 40 s followed by gradual depolarization by +18±1% (n=14) within 5 min. The transepithelial resistance increased significantly from 1.78±0.11 kΩ cm to 2.20±0.21 kΩ cm (n=15). Rapid rewarming of the bath to 38°C caused a depolarization from −61±2 mV (n=17) to −43±2 mV (n=16) within 15 s followed by a repolarization to −59±2 mV (n=10) within 40 s. Ouabain invariably depolarized PDbl. During both, sustained cooling or application of ouabain, the sensitivity of PDbl to bath potassium concentration decreased in parallel to PDbl pointing to a gradual decrease of potassium conductance. Phlorizin hyperpolarized the cell membrane from −59±2 to −66±1 mV (n=13), virtually abolished the transient hyperpolarization under cooling, and significantly reduced the depolarization after rewarming from +17±2 mV (n=16) to +9±3 mV (n=9). The present data indicate that the contribution of peritubular potassium conductance to the cell membrane conductance decreases following inhibition of basolateral (Na++K+)-ATPase. Apparently, cooling from 37° to 10°C does not only reduce (Na−+K+)-ATPase activity but in addition luminal sodium uptake mechanisms such as the sodium glucose cotransporter. As a result, cooling leads to an initial hyperpolarization of the cell followed by depolarization only after some delay.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...