Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 130 (1992), S. 183-190 
    ISSN: 1432-1424
    Keywords: Na+ channel properties ; protein kinase C ; angiotensin II ; OAG ; phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Elementary Na+ currents were recorded at 19°C in cell-attached and inside-out patch-clamp experiments to study the influence of the vasoactive peptide angiotensin II (A II) and of the diacylglycerol analogue OAG (1-oleoyl-2-acetyl-snglycerol) on open probability and gating properties of single cardiac Na+ channels from cultured neonatal rat cardiocytes. Treating the cardiocytes with A II caused Na+ channel activation: reconstructed peak INa increased to 137 ± 17.5% of control at 3 μmol/liters and to 176 ± 42% at 30 μmol/liter. This NPo increase developed without major changes in open state and burst activity, even at 30 μmol/liter. OAG (6 μmol/liter) did not mimic this A II action. By contrast, OAG treatment of the cardiocytes had the opposite effect on NPo and diminished reconstructed peak INa to 67 ± 4.9% of the control. The putative protein kinase C inhibitor staurosporine (0.2 μmol/liter) abolished this INa depression and led to a normalization of NPo. OAG had the same effect on isolated Na+ channels. Exposure of the cytoplasmic surface of inside-out patches to 1 μmol/liter OAG reversibly depressed, in the simultaneous presence of 50 μmol/liter Mg-ATP, the reconstructed peak INa to 40 ± 9.7% of the control but left i unit, τ open and burst activity unaffected. No NPo depression was obtained in the absence of Mg-ATP indicating that Mg-ATP may serve as phosphate donor. Obviously, after phosphorylation by protein kinase C, cardiac Na+ channels attain a reduced open probability but appear to preserve their kinetic properties. It is also concluded that activation of protein kinase C is not the mechanism underlying the A II induced channel activation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...