Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 71 (1992), S. 4492-4501 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Heteroepitaxial layers of InP with thickness D ranging from 0.1 to 6.0 μm were grown by low-pressure metalorganic chemical vapor deposition on (001) surfaces of GaAs substrates. Their dislocation structure, induced strains, and nature of the radiative recombinations were investigated as a function of D with transmission electron microscopy, x-ray diffraction, and photoluminescence spectroscopy. For D〈2 μm, the films are highly dislocated with a tangle of interfacial and threading dislocations above the heterointerface. The spatial extent of the interfacial dislocations and the density of threading dislocations increase with increasing D. For D(approximately-greater-than)2 μm the portion of the layers away from the heterointerface by more than 1.5 μm shows a decrease in the density of threading dislocations and a dramatic improvement in the crystalline quality with increasing D.Typical dislocation densities in the neighborhood of the top surface are in the mid 107 cm−2 range when D surpasses 4.0 μm. Concomitant with the improved crystalline quality, the following observations are made. Firstly, the full width at half maximum of the x-ray rocking curves diminishes from values larger than 500 arcsec for D〈1.0 μm to about 200 arcsec for D(approximately-greater-than)4.0 μm. Secondly, the near-band-edge photoluminescence transitions, which for D〈2.0 μm are predominantly determined by defect-induced band tailing, display excitonic character. Thirdly, below-band-gap transitions due to interfacial defects decrease in intensity. Biaxial compressive strain is present in the layers because of lattice mismatch and differences in linear thermal expansion with the substrate.The strain removes the degeneracy between the light- and heavy-hole states at the top of the valence band, and consequently with increasing temperature above 12 K recombinations from the conduction to the split valence bands are observed in the photoluminescence spectra for all D. The identification of such transitions follows from their temperature dependence and the activation energy yield for the thermalization of the holes. The measured valence-band splitting decreases from 12.5 meV for D=0.3 μm to saturation values of 5.6 meV for D(approximately-greater-than)3.0 μm, indicating strain relaxation with D in qualitative agreement with x-ray determinations. Quantitative differences between both methods are realized and are attributed to a temperature dependence of the differential linear thermal expansion. The contribution to the strain from the lattice mismatch is much larger than expected from equilibrium models. The dislocation generation at different stages during the growth is inferred from the strain relaxation against D and the observed location of the dislocations throughout the layers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...