Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 62 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The kinetic properties of endothelin-1 (ET-1) binding sites and the production of inositol phosphates (IPs; IP1, IP2, IP3), cyclic AMP, thromboxane B2, and prostaglandin F2α induced by various endothelins (ET-1, ET-2, ET-3, and sarafotoxin S6b) were examined in endothelial cells derived from human brain microvessels (HBECs). The presence of both high- and low-affinity binding sites for ET-1 with KD1 = 122 pM and KD2 = 31 nM, and Bmax1 = 124 fmol/mg of protein and Bmax2 = 909 fmol/mg of protein, respectively, was demonstrated on intact HBECs. ET-1 dose-dependently stimulated IP accumulation with EC50 (IP3) = 0.79 nM, whereas ET-3 was ineffective. The order of potency for displacing ET-1 from high-affinity binding sites (ET-1 〉 ET-2 〉 sarafotoxin S6b 〉 ET-3) correlated exponentially with the ability of respective ligands to induce IP3 formation. ET-1-induced IP3 formation by HBEC was inhibited by the ETA receptor antagonist, BQ123. The protein kinase C activator phorbol myristate ester dose-dependently inhibited the ET-1-stimulated production of IPs, whereas pertussis toxin was ineffective. Cyclic AMP production by HBECs was enhanced by both phorbol myristate ester and ET-1, and potentiated by combined treatment with ET-1 and phorbol myristate ester. Data indicate that protein kinase C plays a role in regulating the ET-1-induced activation of phospholipase C, whereas interaction of different messenger systems may regulate ET-1-induced accumulation of cyclic AMP. ET-1 also stimulated endothelial prostaglandin F2α production, suggesting that activation of phospholipase A2 is most likely secondary to IP3-mediated intracellular calcium mobilization because both ET-1-induced IP3 and prostaglandin F2α were inhibited by BQ123. These findings are the first demonstration of ET-1 (ETA-type) receptors linked to phospholipase C and phospholipase A2 activation in HBECs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...