Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Dopamine and NO are physiological stimulators of synthesis of cAMP and cGMP, respectively, and NO synthase-containing interneurons in the striatum are physiologically activated by dopamine-containing neurons in the substantia nigra. This study investigated whether lesioning dopamine neurons has multiple consequences in the striatum consistent with the reported sensitization of cAMP synthesis, including alteration of the NO–cGMP pathway and phosphodiesterase-dependent metabolism of cyclic nucleotides. The substantia nigra of adult Sprague-Dawley rats was unilaterally lesioned with 6-hydroxydopamine. Two months later, we determined expression of NO synthase and evaluated cGMP and cAMP levels of intact and deafferented striatum. Moreover, we evaluated cAMP– and cGMP–phosphodiesterase activities in basal conditions and after Ca2+–calmodulin stimulation and determined the expression of the phosphodiesterase-1B isoform and the levels of phosphodiesterase-1B mRNA. Using immunocytochemistry we characterized the distribution of NO synthase and phosphodiesterase-1B within striatal neurons. In the dopamine-deafferented striatum, NO synthase levels were decreased by 42% while NO synthase-immunopositive intrastriatal fibres but not NO synthase neuronal bodies were reduced in number. In the deafferented striatum basal cGMP levels were reduced, and cAMP levels were increased, but cGMP–phosphodiesterase and cAMP–phosphodiesterase activities were both increased in basal and Ca2+–calmodulin-stimulated conditions. Accordingly, phosphodiesterase-1B expression and phosphodiesterase-1B mRNA were upregulated while a large population of medium-sized striatal neurons showed increased phosphodiesterase-1B immunoreactivity. Dopamine deafferentation led to a complex down-regulation of the NO–cGMP pathway in the striatum and to an up-regulation of phosphodiesterase-1B-dependent cyclic nucleotide metabolism, showing new aspects of neuronal plasticity in experimental hemiparkinsonism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...