Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In this study, we monitored the direct expression of P2 receptors for extracellular ATP in cerebellar granule neurons undergoing metabolism impairment. Glucose deprivation for 30–60 min inhibited P2Y1 receptor protein, only weakly modulated P2X1, P2X2 and P2X3, and up-regulated by about two-fold P2X4, P2X7 and P2Y4. The P2X/Y antagonist basilen blue, protecting cerebellar neurons from hypoglycemic cell death, maintained within basal levels only the expression of P2X7 and P2Y4 proteins, but not P2X4 or P2Y1. Glucose starvation transiently increased (up to three-fold) the expression of NGFRp75 receptor protein and strongly stimulated the extracellular release of nerve growth factor (NGF; about 10-fold). Exogenously added NGF then augmented hypoglycemic neuronal death by about 60%, increasing the percentage of Höechst-positive nuclei (from approximately 62 to 95%), reducing lactate dehydrogenase (LDH) release (from about 50 to 14%) and significantly overstimulating the hypoglycemia-induced expression of P2X7 and P2Y4. Conversely, extracellular ATP augmented hypoglycemic neuronal death by about 80%, reducing the number of Höechst-positive nuclei (from approximately 62% to 14%), augmenting LDH outflow (by about 30%) and further increasing the hypoglycemia-induced expression of NGFRp75. Our results indicate that P2 and NGFRp75 receptors are modulated during glucose starvation and that extracellular ATP and NGF drive features of, respectively, necrotic and apoptotic hypoglycemic cell death, aggravating the consequences of metabolism impairment in cerebellar primary neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In Huntington's disease neuronal degeneration mainly involves medium-sized spiny neurons. It has been postulated that both excitotoxic mechanisms and energy metabolism failure are implicated in the neuronal degeneration observed in Huntington's disease. In central neurons, 〉40% of the energy released by respiration is used by Na+/K+ ATPase to maintain ionic gradients. Considering that impairment of Na+/K+ ATPase activity might alter postsynaptic responsivity to excitatory amino acids (EAAs), we investigated the effects of the Na+/K+ ATPase inhibitors, ouabain and strophanthidin, on the responses to different agonists of EAA receptors in identified medium-sized spiny neurons electrophysiologically recorded in the current- and voltage-clamp modes. In most of the cells both ouabain and strophanthidin (1–3 μM) did not cause significant change in the membrane properties of the recorded neurons. Higher doses of either ouabain (30 μM) or strophanthidin (30 μM) induced, per se, an irreversible inward current coupled to an increase in conductance, leading to cell deterioration. Moreover, both ouabain (1–10 μM) and strophanthidin (1–10 μM) dramatically increased the membrane depolarization and the inward current produced by subcritical concentrations of glutamate, AMPA and NMDA. These concentrations of Na+/K+ ATPase inhibitors also increased the membrane responses induced by repetitive cortical activation. In addition, since it had previously been proposed that dopamine mimics the effects of Na+/K+ ATPase inhibitors and that dopamine agonists differentially regulate the postsynaptic responses to EAAs, we tested the possible modulation of EAA-induced membrane depolarization and inward current by dopamine agonists. Neither dopamine nor selective dopamine agonists or antagonists affected the postsynaptic responses to EAAs. Our experiments show that impairment of the activity of Na+/K+ ATPase may render striatal neurons more sensitive to the action of glutamate, lowering the threshold for the excitotoxic events. Our data support neither the role of dopamine as an ouabain-like agent nor the differential modulatory action of dopamine receptors on the EAA-induced responses in the striatum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We have studied the effects of dopamine and the D2-like agonist quinpirole on calcium currents of neurons isolated from the striatum and the globus pallidus (GP). Experiments were performed in young adult rats, either in control conditions or following lesion of the nigrostriatal pathway by the unilateral injection of 6-hydroxydopamine (6-OHDA) in the substantia nigra. Apomorphine-driven contralateral turning, 15 days after lesioning, assessed the severity of the dopamine denervation. In addition, the loss of tyrosine hydroxylase immunohistochemistry confirmed the extent of the toxin-induced damage. In both striatal medium spiny (MS) and GP neurons of control animals dopamine and quinpirole promoted a very modest inhibition of calcium conductance. Following 6-OHDA, the inhibition was unaltered in MS (from 10 to 12%), but significantly augmented in GP neurons (21% vs. 9%). Interestingly, analogous inhibition was observed in GP neurons dissociated 20 h after reserpine treatment. Further features of the D2 response were thus studied only in neurons isolated from 6-OHDA-lesioned GP. The D2 modulation was G-protein-mediated but not strictly voltage-dependent. ω-Conotoxin-GVIA occluded the response implying the involvement of N-type calcium channels. The effect of quinpirole developed fast and was insensitive to alterations of cytosolic cAMP. The incubation in phorbol esters or OAG blocked the D2 effect, supporting the involvement of PKC. These findings suggest that postsynaptic D2-like receptors are functionally expressed on GP cell bodies and may supersensitize following dopamine-denervation. A direct D2 modulation of calcium conductance in GP may alter GP firing properties and GABA release onto pallidofugal targets.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Dopamine and NO are physiological stimulators of synthesis of cAMP and cGMP, respectively, and NO synthase-containing interneurons in the striatum are physiologically activated by dopamine-containing neurons in the substantia nigra. This study investigated whether lesioning dopamine neurons has multiple consequences in the striatum consistent with the reported sensitization of cAMP synthesis, including alteration of the NO–cGMP pathway and phosphodiesterase-dependent metabolism of cyclic nucleotides. The substantia nigra of adult Sprague-Dawley rats was unilaterally lesioned with 6-hydroxydopamine. Two months later, we determined expression of NO synthase and evaluated cGMP and cAMP levels of intact and deafferented striatum. Moreover, we evaluated cAMP– and cGMP–phosphodiesterase activities in basal conditions and after Ca2+–calmodulin stimulation and determined the expression of the phosphodiesterase-1B isoform and the levels of phosphodiesterase-1B mRNA. Using immunocytochemistry we characterized the distribution of NO synthase and phosphodiesterase-1B within striatal neurons. In the dopamine-deafferented striatum, NO synthase levels were decreased by 42% while NO synthase-immunopositive intrastriatal fibres but not NO synthase neuronal bodies were reduced in number. In the deafferented striatum basal cGMP levels were reduced, and cAMP levels were increased, but cGMP–phosphodiesterase and cAMP–phosphodiesterase activities were both increased in basal and Ca2+–calmodulin-stimulated conditions. Accordingly, phosphodiesterase-1B expression and phosphodiesterase-1B mRNA were upregulated while a large population of medium-sized striatal neurons showed increased phosphodiesterase-1B immunoreactivity. Dopamine deafferentation led to a complex down-regulation of the NO–cGMP pathway in the striatum and to an up-regulation of phosphodiesterase-1B-dependent cyclic nucleotide metabolism, showing new aspects of neuronal plasticity in experimental hemiparkinsonism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Combination of morphological and electrophysiological techniques provided data, suggesting existence in the young rat striatum of a peculiar class of neurons, the neurogliaform or dwarf neurons. Striatal neurons (n = 92), intracellularly recorded from rat brain slices, were filled (one in each slice) with the intracellular marker biocytin, to compare physiological and morphological properties in the same cell. Moreover, some neurons (n = 7) were filled with biocytin plus the fluorescent calcium indicator fura-2, identifying cells during electrophysiological recording.Electrophysiological recordings showed that striatal neurons had different firing patterns, suggestive in most cases (n = 80) of spiny neuron class and in others (n = 12) of interneuron class. Fura-2 injection clearly identified the body of six medium-sized cells and of one distinctive tiny cell. This small cell, however, showed a resting membrane potential and spontaneous and evoked firing pattern characteristic of striatal interneurons. Moreover, the fura-2 injected in such small neuron also completely filled the cell body of a near large neuron; the fura-2 fluorescence changed synchronously in the two paired neurons after electrical stimulation of the impaled small one. Accordingly, the biocytin staining identified the morphology of the small recorded neuron as a neurogliaform-like cell apposed to a dendrite of an aspiny neuron, suggesting that the dye injected in one neuron had diffused to the other of a different type. Furthermore, such heterologous dye coupling unexpectedly involved seven pairs of cells detected with biocytin staining (7.6% of the recorded neurons), invariably represented by a medium or large neuron on one side, and on the other side by a small (5.44 ± 0.15 × 9.14 ± 0.7 μm, mean ± SD;n = 7) neurogliaform cell, roundish in shape with few slender and short processes, usually apposed to a dendrite of the companion neurons (six out of seven). In the other cases, the biocytin staining revealed in each slice either the morphology of single spiny or aspiny neurons (80.4% of recorded neurons), or of two–three medium-sized spiny neurons detected near to each other, suggesting that dye coupling had occurred typically between similar neurons (11.9% of the recorded neurons).These data suggest that some neurogliaform cells in the striatum of young rat can be identified as dwarf interneurons, that may be dye-coupled with neurons of different classes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 222 (1982), S. 691-693 
    ISSN: 1432-0878
    Keywords: Jugular vein ; Histochemistry ; Adrenergic innervation ; Cholinergic innervation ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The autonomic innervation of rat jugular vein was studied using glyoxylic acid fluorescence and acetylcholinesterase histochemical methods. The rat jugular vein is provided with both adrenergic and cholinergic nerve fibers organized in plexuses located at the adventitial-medial border. The existence of these nerve plexuses does not seem to support biochemical findings that suggest a lack of innervation in the rat jugular vein and which propose this blood vessel as a model for the analysis of drug-smooth muscle cell interaction without the interference of neuronal uptake mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...