Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 6 (1960), S. 693-697 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A knowledge of the temperature distribution about bodies of revolution, and more particularly about spheres, is of interest in connection with many problems associated with thermal and material transport. The present investigation involved measurements of the temperature distribution in the boundary flows about a 0.5-in. porous sphere and 0.5-in. and 1.0-in. silver spheres. The measurements were made in an air stream at velocities between 4 and 32 ft./sec. under conditions of shear flow, as well as at various positions in the wake of a perforated grid. From these measurements the thickness of the thermal boundary layer was established as a function of polar angle and conditions of flow. The experimental data were correlated upon the assumption that the normalized temperature in the boundary flow is a single-valued function of the position in the thermal boundary layer. It appeared that this simple assumption described the experimental data within the uncertainties of measurement and that the Blasius function provided a reasonable description of the relationship of the normalized temperature to the relative position in the thermal boundary layer.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...