Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 30 (1984), S. 802-807 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A theoretical equation is derived for the collision rate of aerosol particles in a homogeneous and isotropic turbulent system. This equation takes into account the relative velocity between fluid and particles. The calculated results indicate that the relative velocity between fluid and particles is the main factor in the turbulent coagulation (agglomeration, coalescence) of unequally sized particles in an air flow. This hold true, even when the particle sizes are less than 1 micron. For particles of equal radii the coagulation coefficient reaches its minimum value, because the effect of motion relative to the fluid now becomes zero and only the spatial variation of turbulent motion remains to cause collisions between the particles. For particles following a fluid motion completely, as in a water stream, the equation for the collision rate reduces to the Saffman and Turner equation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...