Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1569-1578 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: For the first time, a model for dynamic adsorption and tension of diffusion-controlled systems has been extended to binary premicellar mixtures of nonionic surfactants of different adsorption capacities and nonideal interactions in the monolayer. Local equilibria between subsurface concentrations and adsorbate densitities are modeled using the nonideal adsorbed solution theory, which describes these two elements. The model shows that larger molecules (those with the smaller adsorption capacity) tend to be preferentially adsorbed at low times, if they have equal adsorption equilibrium constants and diffusivities, and smaller moleules at longer times. This adsorption selectivity is reduced when larger molecules have a much larger adsorption equilibrium constant, or when there are negative deviations from ideality in the monolayer. This model's predictions are compared to tension data for two nonionic surfactants, C12E5 and Triton X-100, at 25°C. The data are represented well by the diffusion-controlled model with a finite diffusion-layer thickness, which describes the faster decrease in tension observed with the bubble surfactometer, compared to data with other techniques. With this model, surface coverages and concentration profiles are calculated, thus elucidating the adsorption selectivity of molecules of different adsorption capacities. Synergistic effect in dynamic tension and adsorption can be predicted. Mild synergism in dynamic tension lowering by the preceding nonionic surfactants is also observed.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...