Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 201-215 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Selected samples of waste microbial biomass used in industrial fermentation processes and wastewater biological treatment plants have been studied for their radium biosorption ability from aqueous solutions. Equilibrium biosorption isotherms have been used to quantify the radium uptake capacity of the various types of biomass which were also compared to two types of activated carbon. Solution pH affected the observed uptake significantly. In general, the biomass types that showed appreciable sorption capacity exhibited maximum uptake between pH 7 and 10. The uptake was reduced considerably at pH 4 and little or no uptake was observed at pH 2. Radium biosorptive uptake capacities of the order of 4.5 × 104 nCi/g, at pH 7 and at an equilibrium radium concentration of 1000 pCi/L, were determined for a mixed culture, while the biomass of Penicillium chrysogenum adsorbed 5 × 104 nCi/g radium under the same conditions. The highest uptake value for a sample of F-400 granular activated carbon was 3600 nCi/g at pH 7 and 1000 pCi/L radium concentration. The biosorptive radium uptake of microbial biomass is compared to literature values for other types of adsorbents. The most effective biomass types studied exhibited radium removals in excess of 99% of the radium in solution.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...