Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 13 (1980), S. 421-446 
    ISSN: 0091-7419
    Keywords: evolution ; membrane transport ; proton pumps ; ATPase ; oxidative phosphorylation ; flavoproteins ; quinone ; cytochromes ; photosynthesis ; bacterial rhodopsin ; protonmotive force ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: One of the first problems encountered by primitive cells was that of volume regulation; the continuous entry of ions, (eg, NaCl) and water in response to the internal colloid osmotic pressure threatening to destroy the cell by lysis. We propose that to meet this environmental challenge cells evolved an ATP-driven proton extrusion system plus a membrane carrier that would exchange external protons with internal Na+. With the appearance of the ability to generate proton gradients, additional mechanisms to harness this source of energy emerged. These would include proton-nutrient cotransport, K+ accumulation, nucleic acid entry, and motility. A more efficient system for the uptake of certain carbohydrates by vectorial phosphorylation via the PEP-phosphotransferase system probably appeared rather early in the evolution of anaerobic bacteria.The reversal of the proton-ATPase reaction to give net ATP synthesis became possible with the development of other types of efficient proton transporting machinery. Either light-driven bacterial rhodopsin or a redox system coupled to proton translocation would have served this function. Oxidation of one substrate coupled to the reduction of another substrate by membrane-bound enzymes evolved in such a manner that protons were extruded from the cell during the reaction. The progressive elaboration of this type of redox proton pump permitted the use of exogenous electron acceptors, such as fumarate, sulfate, and nitrate. The stepwise growth of these electron transport chains required the accretion of several flavoproteins, iron-sulfur proteins, quinones, and cytochromes. With modifications of these four basic components a chlorophyll-dependent photosynthetic system was subsequently evolved. The oxygen that was generated by this photosynthetic system from water would eventually accumulate in the atmosphere of the earth. With molecular oxygen present, the emergence of cytochrome oxidase would complete the respiratory chain.The proton economy of membrane energetics has been retained by most present-day microorganisms, mitochondria, chloroplasts, and cells of higher plants. A secondary use of the energy stored as an electrochemical difference of Na+ for powering membrane events probably also evolved in microorganisms. The exclusive use of the Na+ economy is distinctive of the plasma membrane of animal cells; the Na+-K+ ATPase sets up an electrochemical Na+ gradient that provides the energy for osmoregulation, Na+-nutrient cotransport, and the action potential of excitable cells.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...