Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Particle and Particle Systems Characterization 12 (1995), S. 139-147 
    ISSN: 0934-0866
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Dynamic light scattering is a widely used technique for the sizing of colloidal suspensions. It is capable of measuring particles across the size range from approximately 1 nm to several microns. However the larger particle sizes tend to pose problems for the interpretation of the scattered light signal either by virtue of their light scattering efficiency relative to the smaller species present or the departure of the scattered light signal from Gaussian statistics. Rapid removal of such particles in-situ could extend the use of dynamic light scattering particularly in on-line analysis or laboratory automated measurement. In this paper a method is demonstrated for the in-situ removal of larger particles in suspension by means of ultrasonic standing waves and concurrent dynamic light scattering measurement. The theory behind ultrasonic particle manipulation and its effect on the motion of the particles is discussed. Data from a scattering cell designed to incorporate the ultrasonic technology is presented showing that dynamic light scattering measurements may be carried out under such conditions. Varying the energy density of the ultrasonic field allows particles greater than a defined cut-off diameter to be removed from the measurement region. Theory shows that the minimum cut-off size may be as small as 100 nm. Results presented here demonstrate complete removal at a lower diameter threshold of approximately 2000 nm.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...