Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 11 (1979), S. 951-967 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The photochemistry of azo-n-propane is investigated at 366 nm up to 1 atm pressure, and over a range of temperature from 50 to 190°C. Some additional experiments with azoethane at room temperature and azoisopropane at 180 and 190°C are also reported. From a consideration of the pressure dependence of the quantum yields for photodissociation a generalized mechanism is proposed which accounts for the known experimental observations in acyclic azoalkane photochemistry. These observations include the extensive photoisomerization data which were previously obtained for azoisopropane. In the mechanistic scheme dissociation at low pressures is believed to occur mainly from S1v and T1v, the vibrationally excited and randomized first excited singlet and triplet states. At high pressures and low temperatures (≤100°C) the major dissociation channel is probably a nonrandom S1 state. In direct or singlet sensitized photolysis isomerization occurs predominatly at high pressure and is postulated to occur by internal conversion from S10, the thermalized singlet, to the ground state. During the process partitioning to the cis or trans isomer is equally probable. In triplet sensitized photolysis isomerization occurs via intersystem crossing from T1to the ground state. At elevated temperatures (〉150°C) dissociation from S10, which has a significant activation energy, can compete with return to the ground state.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...